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1.) Motivation 
• Sparse linear algebra kernels 

– Present in many scientific/big-data applications 
– Achieving high performance is difficult 

• irregular access patterns and weak locality 

– Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc. 

• Novel architectures for sparse applications 
– Emu: light-weight migratory threads, narrow memory, 

near-memory processing 

• Our work 
– Study impact of existing optimizations for sparse 

algorithms on Emu versus cache-memory based systems 
– Target algorithm: Sparse Matrix-Vector Multiply (SpMV) 
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• irregular access patterns and weak locality 

– Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc. 

• Novel architectures for sparse applications 
– Emu: light-weight migratory threads, narrow memory, 

near-memory processing 

• Our work 
– Study impact of existing optimizations for sparse 

algorithms on Emu versus cache-memory based systems 
– Target algorithm: Sparse Matrix-Vector Multiply (SpMV) 

• Compressed Sparse Row (CSR) 
 

 

 

3 



2.) Emu Architecture 

4 



2.) Emu Architecture 

• Gossamer Core (GC) 

– general purpose, 
cache-less 

– supports up to 64 
concurrent light-
weight threads 

• Narrow Memory 

– eight 8-bit channels 
rather than a single, 
wider 64-bit interface 

• Memory-side 
Processor 

– executes atomic and 
remote operations 

– remote ops do not 
generate migrations 

 

 

 

 

System used in our work:  
8 nodelets with 1 GC per nodelet (150MHz) 

8GB DDR4 1600MHz per nodelet 
64 threads per nodelet (512 total) 
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rather than a single, 
wider 64-bit interface 

• Memory-side 
Processor 
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– remote ops do not 
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System used in our work:  
1 node: 8 nodelets with 1 GC per nodelet (150MHz) 

8GB DDR4 1600MHz per nodelet 
64 threads per nodelet (512 total) 12 
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2.) Emu Architecture: Migrations 

1.) Thread on GC issues 
remote mem access 

2.) GC makes request to 
NQM to migrate thread 

3.) Thread moved into 
migration queue 

4.) Thread sent over ME 
once accepted by NQM 
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2.) Emu Architecture: Migrations 

1.) Thread on GC issues 
remote mem access 

2.) GC makes request to 
NQM to migrate thread 

3.) Thread moved into 
migration queue 

4.) Thread sent over ME 
once accepted by NQM 

5.) Thread arrives in dest run queue and 
waits for available register set on a GC 

Thread Context: Roughly 200 bytes (PC, 
registers, stack counter, etc.) 
Migration Cost: ~2x more than a local 
access 
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3.) SpMV Optimizations: Vector Data Layout 

• Updating b may require remote writes 
– non-zeros on row i are all assigned to a single thread  

b[i] accumulated in register and then updated via single 
remote write (or local write) 

• SpMV requires one load from x per non-zero 
– each access may generate migration  layout of x is 

crucial to performance 

• Cyclic and Block layouts 
– Cyclic: adjacent elements of vector are on different 

nodelets (round-robin)  consecutive accesses require 
migrations 

– Block: equally divide the vectors into fixed-size blocks 
and place 1 block on each nodelet 
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• Row based 
– evenly distribute rows 
– block size of b == # rows per 
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zeros to each nodelet 
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NDLT 7 

• Non-zero based 
– “evenly” distribute non-

zeros 
– may assign unequal # of 

rows to each nodelet 
• remote writes may be 

required for b 
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4.) Experiments and Results 
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4.) Experiments: Matrices 
• Evaluated SpMV 

across 40 matrices 
– Following results 

focus on a 
representative 
subset 

– RMAT graph 
produced with 
a=0.45, b=0.22, 
c=0.22 

– All matrices are 
square 

– Non-symmetric 
denoted with “*”, 
symmetric 
matrices stored in 
their entirety 
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4.) Results: Vector Data Layouts 
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Bandwidth: Cyclic VS Block 
8 nodelets - 64 threads per nodelet 

CYCLIC BLOCK

• Row-based work distribution used 
• Block layout achieves up to 25% more BW 

– better at reducing migrations on matrices with “tight” main diagonal (next 
slide)  1.4x – 6.3x fewer migrations than cyclic 
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4.) Results: Work Distribution 

• Block vector data layout used 
• Non-zero distribution achieves up to 3.34x more BW 

– provides significantly better load balancing 
– but incurs more migrations, on average  suggests that load balancing can be equally 

important to performance as reducing migrations  
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4.) Results: Hardware Load Balancing 

• Cannot isolate threads to hardware resources 

– Due to migratory nature of Emu threads  

– Data layout and memory access pattern dictate the 
load balancing of hardware 

• Very difficult to control for irregular algorithms 

– Hot-spots can form despite best efforts evenly 
distribute work 

• Example: cop20k_A  
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– Due to migratory nature of Emu threads  

– Data layout and memory access pattern dictate the 
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• Very difficult to control for irregular algorithms 

– Hot-spots can form despite best efforts to evenly 
distribute work 

• Example: cop20k_A  
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8 nodelets - 64 threads per nodelet 

4.) Results: Hardware Load Balancing (cont.) 

• 25% of the non-zeros require access to elements of x that are on nodelet 0  
majority of threads converge on nodelet 0 at roughly same time 

• Nodelet 0 cannot main high thread activity 
– migration queue becomes swamped immediately 
– Emu currently throttles # of active threads based on resource availability on nodelet 

(i.e., queue sizes) 

• Load balancing drastically improved by running with fewer nodelets/threads 
– suggests that the load imbalance issue will persist/be worse in multi-node execution 
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4.) Results: Matrix Reordering 

• Question: can known matrix reordering 
techniques offer performance gains, and 
mitigate hardware load balancing issues? 

• We looked at 

– Breadth First Search (BFS) 

– METIS 

– Randomly permute rows/columns 
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4.) Results: Matrix Reordering (cont.) 
• cop20k_A matrix when reordered 
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4.) Results: Matrix Reordering (cont.) 

• BFS and METIS provide up to 70% more BW over original 
– tend to cluster along main diagonal and produce balanced rows  reduces 

migrations and provides good load balancing 

• Random offers up to 50% more BW over original 
– produces balanced rows by uniformly spreading out non-zeros 
– incurs many more migrations but provides “natural” hot-spot mitigation 
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4.) Results: Matrix Reordering (cont.) 
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4.) Results: Matrix Reordering (cont.) 

• BFS and METIS only provide up to 16% more BW over original on 
cache-memory based system 

• Random is never better than original, and is usually much worse 
– penalty of a cache miss is much more severe when compared to a 

migration on Emu 
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4.) Results: Matrix Reordering (cont.) 

• BFS and METIS only provide up to 16% more BW over original on 
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5.) Conclusions and Future 
Work 
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5.) Conclusions 
• Minimizing migrations is generally a good strategy 

on Emu, but work distribution and load balancing is 
of similar importance for high performance 

• Very difficult to enforce explicit hardware load 
balancing on Emu due to migratory threads 
– data placement and memory access patterns entirely 

dictate the work performed by hardware resources 

• Matrix reordering on Emu has a larger impact on 
SpMV performance than traditional systems 
– 70% improvement on Emu Vs 16% on x86 

– Random reordering performs very well on Emu 
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5.) Future Work 
• Evaluate new hardware/software upgrades for 

Emu 

– faster GC clock, hot-spot mitigation improvements 

• Run across multiple nodes 

• Investigate other sparse storage formats 

• Look closer at randomized data distributions 
(work by Valiant) and how it could be applied on 
Emu 
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Questions? 

Work published at the 8th Workshop on Irregular Applications: 
Architectures and Algorithms (IA^3) for SC18 
 
Contact: tbrolin@cs.umd.edu 
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4.) Results: Work Distribution (cont.) 

• Coefficient of Variation (CV): stdev/mean 
• Low CV for memory instructions issued per nodelet 

– indication of balanced work, as SpMV is memory bound 

• Non-zero approach incurs an average of 1.69x more migrations 
– suggests that proper load balancing can be more beneficial than reducing migrations 
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4.) Results: Matrix Reordering (cont.) 
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