Impact of Traditional Sparse
Optimizations on a Migratory Thread
Architecture

Thomas B. Rolinger, Christopher D. Krieger

SC 2018

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

R

Outline

1. Motivation

Emu Architecture

. SpMV Optimizations
Experiments and Results

KR W N

Conclusions & Future Work

1.) Motivation

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

1.) Motivation

* Sparse linear algebra kernels
— Present in many scientific/big-data applications

— Achieving high performance is difficult
* irregular access patterns and weak locality

— Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

$

The Laboratory for Physical Sciences

1.) Motivation

* Sparse linear algebra kernels
— Present in many scientific/big-data applications

— Achieving high performance is difficult
* irregular access patterns and weak locality
— Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

* Novel architectures for sparse applications

— Emu: light-weight migratory threads, narrow memory,
near-memory processing

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

$

The Laboratory for Physical Sciences

1.) Motivation

* Sparse linear algebra kernels
— Present in many scientific/big-data applications

— Achieving high performance is difficult
* irregular access patterns and weak locality

— Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

* Novel architectures for sparse applications

— Emu: light-weight migratory threads, narrow memory,
near-memory processing

 Qur work

— Study impact of existing optimizations for sparse
algorithms on Emu versus cache-memory based systems

— Target algorithm: Sparse Matrix-Vector Multiply (SpMV)
* Compressed Sparse Row (CSR)

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

$

The Laboratory for Physical Sciences

2.) Emu Architecture

2.) Emu Architecture

nodelet 0 nodelet 7
A A
((
Narrow Channel DRAM Narrow Channel DRAM
— Memory-Side Processor] — Memory-Side Processor]

[GIC] [GIC] [GIC] [GIC] [GIC] [GIC] [GIC] [GIC]

Run Migration Memory Run Migration Memory
Queue Queue Queue Queue Queue Queue

Migration Engine

2.) Emu Architecture

Gossamer Core (GC)

— general purpose,
cache-less

— supports up to 64
concurrent light-
weight threads

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor]

[Gic] [GIC] [GIC] [GIC]

Memory-Side Processor]

Run Migration Memory
Queue Queue Queue

[GIC] [GIC] [GIC] [GIC]

Run Migration Memory
Queue Queue Queue

Migration Engine

2.) Emu Architecture

nodelet 0 nodelet 7
| A
* Gossamer Core (GC) |
Narrow Channel DRAM Narrow Channel DRAM
— general purpose,
cache-less
— Memory-Side Processor] — Memory-Side Processor]

— supports up to 64

it threags (o) (3¢ (o< (=¢) (o) (3¢] (<] (5¢)

* Narrow Memory

— eight 8-bit channels
rather than a single, I I

Wider 64'b|t interface Run Migration Memory Run Migration Memory

Queue Queue Queue Queue Queue Queue

Migration Engine

2.) Emu Architecture

Gossamer Core (GC)

— general purpose,
cache-less

— supports up to 64
concurrent light-
weight threads

Narrow Memory

— eight 8-bit channels
rather than a single,
wider 64-bit interface

Memory-side
Processor

— executes atomic and
remote operations

— remote ops do not
generate migrations

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor] ‘

[Glc] [Glc] [Glc] [Glc]

Memory-Side Processor]

Migration Memory
Queue Queue Queue

[Glc] [Glc] [Glc] [Glc]

Run Migration Memory
Queue Queue Queue

Migration Engine

2.) Emu Architecture

Gossamer Core (GC)

— general purpose,
cache-less

— supports up to 64
concurrent light-
weight threads

Narrow Memory

— eight 8-bit channels
rather than a single,
wider 64-bit interface

Memory-side
Processor

— executes atomic and
remote operations

— remote ops do not
generate migrations

nodelet 0 nodelet 7
A A
(
Narrow Channel DRAM Narrow Channel DRAM
Memory-Side Processor] — Memory-Side Processor]

CICIEICS |

ac || e |ac]

Migration Memory Run
Queue Queue Queue Queue

Migration Memory
Queue Queue

Migration Engine

System used in our work:
1 node: 8 nodelets with 1 GC per nodelet (150MHz)
8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor]

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Memory-Side Processor]

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Migration Engine

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor]

2.) GC makes request to
NQM to migrate thread

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Memory-Side Processor]

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Migration Engine

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor]

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Memory-Side Processor]

[GL][GL][GL][GL]

Run Migration Memory
Queue Queue Queue

Migration Engine

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

nodelet 0
A

nodelet 7
A

Narrow Channel DRAM

Narrow Channel DRAM

Memory-Side Processor]

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NOM

[GL][GL][GL][GL]

Migration Memory
Queue Queue Queue

Memory-Side Processor]

[GL][GL][GL][GL]

Migration Memory
Queue Queue Queue

» Migration Engine

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

nodelet 0 nodelet 7
A A
(
Narrow Channel DRAM Narrow Channel DRAM
Memory-Side Processor] Memory-Side Processor]

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NOM

[Glc] [elc] [Glc] [Glc] [Glc] [Glc] [Glc] [Glc]

Migration Memory Migration Memory
Queue Queue Queue Queue Queue Queue

» Migration Engine

5.) Thread arrives in dest run queue and
waits for available register set on a GC

2.) Emu Architecture: Migrations

nodelet 0 nodelet 7
A A
((
Narrow Channel DRAM Narrow Channel DRAM
Memory-Side Processor] Memory-Side Processor]

1.) Thread on GC issues
remote mem access [| | | [| | |

ac||ac| e |ac ac||ac| e |ac

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into]]

migration queue Migration Memory Migration Memory
Queue Queue Queue Queue Queue Queue

4.) Thread sent over ME

N
once accepted by NOQM N Migration Engine

Thread Context: Roughly 200 bytes (PC, 5.) Thread arrives in dest run queue and
registers, stack counter, etc.) waits for available register set on a GC
Migration Cost: ~“2x more than a local

access

3.) SpMV Optimizations

3.) SpMV Optimizations: Vector Data Layout 8

* Updating b may require remote writes

— non-zeros on row i are all assigned to a single thread =
b[i/] accumulated in register and then updated via single
remote write (or local write)

COMPUTER SCIENCE B Ly
VVVVVVVVVVVVVVVVVVVV j L) ASak
The Laboratory for Physical Sciences

3.) SpMV Optimizations: Vector Data Layout

* Updating b may require remote writes

— non-zeros on row i are all assigned to a single thread =
b[i/] accumulated in register and then updated via single
remote write (or local write)

* SpMV requires one load from x per non-zero

— each access may generate migration = layout of x is
crucial to performance

COMPUTER SCIENCE 5 ORC
VVVVVVVVVVVVVVVVVVVV j L) ASak
The Laboratory for Physical Sciences

3.) SpMV Optimizations: Vector Data Layout 8

* Updating b may require remote writes

— non-zeros on row i are all assigned to a single thread =
b[i/] accumulated in register and then updated via single
remote write (or local write)

* SpMV requires one load from x per non-zero

— each access may generate migration = layout of x is
crucial to performance

* Cyclic and Block layouts

— Cyclic: adjacent elements of vector are on different
nodelets (round-robin) = consecutive accesses require
migrations

— Block: equally divide the vectors into fixed-size blocks
and place 1 block on each nodelet

COMPUTER SCIENCE - R
RRRRRRRRRRRRRRRRRRRRR j L) ASak
The Laboratory for Physical Sciences

3.) SpMV Optimizations: Work Distribution

3.) SpMV Optimizations: Work Distribution

* Row based
— evenly distribute rows

3.) SpMV Optimizations: Work Distribution
b

NDLT O

NDLT 1

noLT2f

NDLT 3

NDLT 4

NDLT 5

NDLT 6}

NDLT 7}

* Row based
— evenly distribute rows

— block size of b == # rows per
nodelet

3.) SpMV Optimizations: Work Distribution
b

NDLT O

notr1]

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6}

NDLT 7}

* Row based
— evenly distribute rows

— block size of b == # rows per
nodelet

— may assign unequal # of non-
zeros to each nodelet

3.) SpMV Optimizations: Work Distribution

NDLT O

NDLT 1

noLT2f

NDLT 3

NDLT 4

NDLT 5

NDLT 6}

NDLT 7}

* Row based
— evenly distribute rows

b

— block size of b == # rows
per nodelet

— may assign unequal # of
non-zeros to each nodelet

nowtof &
NDLT 1

NDLT 2

NDLT 3|

NDLT 4

NDLT S|

NDLT 6

NDLT 7

Non-zero based

— “evenly” distribute non-
Zeros

— may assign unequal # of
rows to each nodelet

* remote writes may be
required for b

b

10

4.) Experiments and Results

11

4.) Experiments: Matrices

1 ‘\\. .'
e AN
\\\ N
\ \\ F, :
\'\\ " ! 5*1
% A -
fordl cop20k_A webbase-1M
o ! .. \ | "'v\\l .
Er BEETRIET BeET N\
{34 FT T i
rEre EEERETE g : :
rmat nd24k audikw_1
-mm--m-m
fordl 29x10*
cop20k_A 120K 1.79x 10*
webbase-1M* 1M 3.11x10°¢
rmat* 445K 3.74x 103
nd24k 72K 5.54 x 103
audikw_1 943K 8.72x 10°

* Evaluated SpMV
across 40 matrices

— Following results
focus on a
representative
subset

— RMAT graph
produced with
a=0.45, b=0.22,
c=0.22

— All matrices are
square

— Non-symmetric
denoted with “*”,
symmetric
matrices stored in
their entirety

12

4.) Results: Vector Data Layouts

Bandwidth: Cyclic VS Block
8 nodelets - 64 threads per nodelet

350

300
250

© 200

(a]
= 150
100
50

fordl cop20k_A webbase-1M rmat nd24k audikw_1
B CYCLIC mBLOCK

* Row-based work distribution used

* Block layout achieves up to 25% more BW

— better at reducing migrations on matrices with “tight” main diagonal (next
slide) = 1.4x — 6.3x fewer migrations than cyclic

NDLT O

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

NDLT NDLT NDLT NDLT NDLT NDLT NDLT NDLT

s

0 1 2 3 4 5 6 7
x| I I N O I B

local accessto x

remote accessto x

HEENEEEN -

NDLT O

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

13

14

4.) Results: Work Distribution

Bandwidth: Row VS Non-zero Distribution
400 8 nodelets - 64 threads per nodelet

350
300
250

& 200

Z 150
100

50

fordl cop20k_A webbase-1M rmat nd24k audikw_1

0 ROW B NON-ZERO

* Block vector data layout used
* Non-zero distribution achieves up to 3.34x more BW
— provides significantly better load balancing

— but incurs more migrations, on average = suggests that load balancing can be equally
important to performance as reducing migrations

15

4.) Results: Hardware Load Balancing

 Cannot isolate threads to hardware resources

15

4.) Results: Hardware Load Balancing

 Cannot isolate threads to hardware resources
— Due to migratory nature of Emu threads

— Data layout and memory access pattern dictate the
load balancing of hardware

* Very difficult to control for irregular algorithms

COMPUTER SCIENCE B Ly
VVVVVVVVVVVVVVVVVVVV j L) ASak
The Laboratory for Physical Sciences

15

4.) Results: Hardware Load Balancing

 Cannot isolate threads to hardware resources
— Due to migratory nature of Emu threads

— Data layout and memory access pattern dictate the
load balancing of hardware
* Very difficult to control for irregular algorithms
— Hot-spots can form despite best efforts to evenly
distribute work
* Example: cop20k_A

COMPUTER SCIENCE B Ly
VVVVVVVVVVVVVVVVVVVV j L) ASak
The Laboratory for Physical Sciences

4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100

S
o

number of threads
o 00
oo

N
oo

0 50 100 150 200
time (ms)
e=ND[TQ ==NDLT1 e==NDLT2 e=NDLT3 ==NDLT4 ==NDLTS5 ==NDLT6 ==NDLT?7

4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet

8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100

£ O
e Nolo)

N
oo

0 50 100 150 200
time (ms)
«=NDLTQ ==NDLT1 e==NDLT2 e=NDLT3 ==NDLT4 ==NDLT5 NDLT 6 NDLT 7

number of threads

* 25% of the non-zeros require access to elements of x that are on nodelet 0 2
majority of threads converge on nodelet O at roughly same time

4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100 /

D 00
SO
X

S
o

number of threads

N
oo

0 ‘ 50 100 150 200
time (ms)
«=NDLTQ ==NDLT1 e==NDLT2 e=NDLT3 ==NDLT4 ==NDLT5 NDLT 6 NDLT 7

* 25% of the non-zeros require access to elements of x that are on nodelet 0 2
majority of threads converge on nodelet O at roughly same time
* Nodelet 0 cannot main high thread activity
— migration gueue becomes swamped immediately

— Emu currently throttles # of active threads based on resource availability on nodelet
(i.e., queue sizes)

4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100 /

D 00
SO
X

S
o

number of threads

N
oo

0 ‘ 50 100 150 200
time (ms)
«=N\DLTQ =NDLT1 ==NDLT2 =NDLT3 ==NDLT4 ==NDLT5 ==NDLT6 ==NDLT7
* 25% of the non-zeros require access to elements of x that are on nodelet 0 2
majority of threads converge on nodelet O at roughly same time
* Nodelet 0 cannot main high thread activity
— migration gueue becomes swamped immediately

— Emu currently throttles # of active threads based on resource availability on nodelet
(i.e., queue sizes)

* Load balancing drastically improved by running with fewer nodelets/threads
— suggests that the load imbalance issue will persist/be worse in multi-node execution

17

4.) Results: Matrix Reordering

* Question: can known matrix reordering
techniques offer performance gains, and
mitigate hardware load balancing issues?

* We looked at
— Breadth First Search (BFS)
— METIS
— Randomly permute rows/columns

4.) Results: Matrix Reordering (cont.)

* cop20k_A matrix when reordered

RANDOM

METIS

The Laboratory for Physic

MB/s

4.) Results: Matrix Reordering (cont.))

400
350
300
250
200
150
100

50

Bandwidth: Reordering Techniques
8 nodelets - 64 threads per nodelet

cop20k_A webbase-1M rmat nd24k
EH NONE £ RANDOM BBFS B METIS

4.) Results: Matrix Reordering (cont.))

Bandwidth: Reordering Techniques

400 8 nodelets - 64 threads per nodelet

350
300
250
200
150
100

50

MB/s

fordl cop20k_A webbase-1M rmat nd24k
EH NONE £ RANDOM BBFS B METIS

BFS and METIS provide up to 70% more BW over original

— tend to cluster along main diagonal and produce balanced rows = reduces
migrations and provides good load balancing

MB/s

4.) Results: Matrix Reordering (cont.))

Bandwidth: Reordering Techniques

400

8 nodelets - 64 threads per nodelet

'

350 1

300

250

200
150
100

50

fordl cop20k_A webbase-1M

rmat nd24k audikw_1

E NONE O RANDOM mEBFS W METIS

BFS and METIS provide up to 70% more BW over

original

— tend to cluster along main diagonal and produce balanced rows = reduces

migrations and provides good load balancing
Random offers up to 50% more BW over original

— produces balanced rows by uniformly spreading out non-zeros
— incurs many more migrations but provides “natural” hot-spot mitigation

4.) Results: Matrix Reordering (cont.) ’

Bandwidth: Reordering Techniques

Broadwell Xeon - 32 threads
140000

120000
100000

fordl cop20k_A webbase-1M rmat nd24k audikw_1
ENONE O RANDOM WEBFS B METIS

BFS and METIS only provide up to 16% more BW over original on
cache-memory based system

MB/s

4.) Results: Matrix Reordering (cont.) ’

Bandwidth: Reordering Techniques
Broadwell Xeon - 32 threads

140000
120000
100000
80000
60000
40000
20000
0

fordl cop20k_A webbase-1M rmat nd24k audikw_1
ENONE O RANDOM WEBFS B METIS

BFS and METIS only provide up to 16% more BW over original on
cache-memory based system

Random is never better than original, and is usually much worse

— penalty of a cache miss is much more severe when compared to a
migration on Emu

21

5.) Conclusions and Future
Work

22

5.) Conclusions

* Minimizing migrations is generally a good strategy
on Emu, but work distribution and load balancing is
of similar importance for high performance

The Laboratory for Physical Sciences

22

5.) Conclusions

* Minimizing migrations is generally a good strategy
on Emu, but work distribution and load balancing is
of similar importance for high performance

* Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads

— data placement and memory access patterns entirely
dictate the work performed by hardware resources

COMPUTER SCIENCE - TRy
RRRRRRRRRRRRRRRRRRRRR j L) ASak
The Laboratory for Physical Sciences

22

5.) Conclusions

* Minimizing migrations is generally a good strategy
on Emu, but work distribution and load balancing is
of similar importance for high performance

* Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads

— data placement and memory access patterns entirely
dictate the work performed by hardware resources

* Matrix reordering on Emu has a larger impact on
SpMV performance than traditional systems
— 70% improvement on Emu Vs 16% on x86
— Random reordering performs very well on Emu

The Laboratory for Physical Sciences

23

5.) Future Work

* Evaluate new hardware/software upgrades for
Emu

— faster GC clock, hot-spot mitigation improvements
* Run across multiple nodes
* |nvestigate other sparse storage formats

* Look closer at randomized data distributions

(work by Valiant) and how it could be applied on
Emu

24

Questions?

Work published at the 8t Workshop on Irregular Applications:
Architectures and Algorithms (IA”3) for SC18

Contact: tbrolin@cs.umd.edu

The Laboratory for Physical Sciences

mailto:tbrolin@cs.umd.edu

Back up Slides

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

The Laboratory for Physical Sciences

4.) Results: Work Distribution (cont.)

Coefficient of Variation: Mem Instructions Issued Per Nodelet
8 nodelets - 64 threads per nodelet

Q
'S 0.2
S — []

fordl cop20k_A webbase-1M rmat nd24k audikw_1

@ ROW B NON-ZERO

* Coefficient of Variation (CV): stdev/mean
* Low CV for memory instructions issued per nodelet
— indication of balanced work, as SpMV is memory bound

* Non-zero approach incurs an average of 1.69x more migrations
— suggests that proper load balancing can be more beneficial than reducing migrations

4.) Results: Matrix Reordering (cont.)

cop20k_A (RANDOM): Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

100
90
80
70
60
50
40
30
20 ‘

number of threads

0 20 40 60 80 100 120 140 160
time (ms)

«=NDLTOQ ==NDLT1 e=NDLT2 e==NDLT3 ==NDLT4 ===NDLT5> ==NDLT6 ===NDLT7

