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1.) Motivation

* Sparse linear algebra kernels
— Present in many scientific/big-data applications

— Achieving high performance is difficult
* irregular access patterns and weak locality

— Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

* Novel architectures for sparse applications

— Emu: light-weight migratory threads, narrow memory,
near-memory processing

 Qur work

— Study impact of existing optimizations for sparse
algorithms on Emu versus cache-memory based systems

— Target algorithm: Sparse Matrix-Vector Multiply (SpMV)
* Compressed Sparse Row (CSR)
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System used in our work:
1 node: 8 nodelets with 1 GC per nodelet (150MHz)
8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)
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2.) Emu Architecture: Migrations

nodelet 0 nodelet 7
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Memory-Side Processor] Memory-Side Processor]

1.) Thread on GC issues
remote mem access [ | | | [ | | |
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2.) GC makes request to
NQM to migrate thread

3.) Thread moved into ] ]

migration queue Migration Memory Migration Memory
Queue Queue Queue Queue Queue Queue

4.) Thread sent over ME

N
once accepted by NOQM N Migration Engine

Thread Context: Roughly 200 bytes (PC, 5.) Thread arrives in dest run queue and
registers, stack counter, etc.) waits for available register set on a GC
Migration Cost: ~“2x more than a local

access
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3.) SpMV Optimizations: Vector Data Layout 8

* Updating b may require remote writes

— non-zeros on row i are all assigned to a single thread =
b[i/] accumulated in register and then updated via single
remote write (or local write)

* SpMV requires one load from x per non-zero

— each access may generate migration = layout of x is
crucial to performance

* Cyclic and Block layouts

— Cyclic: adjacent elements of vector are on different
nodelets (round-robin) = consecutive accesses require
migrations

— Block: equally divide the vectors into fixed-size blocks
and place 1 block on each nodelet
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Non-zero based

— “evenly” distribute non-
Zeros

— may assign unequal # of
rows to each nodelet

* remote writes may be
required for b

b
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4.) Experiments and Results
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4.) Experiments: Matrices
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* Evaluated SpMV
across 40 matrices

— Following results
focus on a
representative
subset

— RMAT graph
produced with
a=0.45, b=0.22,
c=0.22

— All matrices are
square

— Non-symmetric
denoted with “*”,
symmetric
matrices stored in
their entirety
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4.) Results: Vector Data Layouts

Bandwidth: Cyclic VS Block
8 nodelets - 64 threads per nodelet
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* Row-based work distribution used

* Block layout achieves up to 25% more BW

— better at reducing migrations on matrices with “tight” main diagonal (next
slide) = 1.4x — 6.3x fewer migrations than cyclic
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4.) Results: Work Distribution

Bandwidth: Row VS Non-zero Distribution
400 8 nodelets - 64 threads per nodelet

350
300
250

& 200

Z 150
100

50

fordl cop20k_A webbase-1M rmat nd24k audikw_1

0 ROW B NON-ZERO

* Block vector data layout used
* Non-zero distribution achieves up to 3.34x more BW
— provides significantly better load balancing

— but incurs more migrations, on average = suggests that load balancing can be equally
important to performance as reducing migrations



15

4.) Results: Hardware Load Balancing
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4.) Results: Hardware Load Balancing

 Cannot isolate threads to hardware resources
— Due to migratory nature of Emu threads

— Data layout and memory access pattern dictate the
load balancing of hardware
* Very difficult to control for irregular algorithms
— Hot-spots can form despite best efforts to evenly
distribute work
* Example: cop20k_A
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4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100

S
o

number of threads
o 00
oo

N
oo

0 50 100 150 200
time (ms)
e=ND[TQ ==NDLT1 e==NDLT2 e=NDLT3 ==NDLT4 ==NDLTS5 ==NDLT6 ==NDLT?7




4.) Results: Hardware Load Balancing (cont.)

cop20k_A: Threads Residing on Each Nodelet

8 nodelets - 64 threads per nodelet

180
160
140 |
120 '

100

£ O
e Nolo)

N
oo

0 50 100 150 200
time (ms)
«=NDLTQ ==NDLT1 e==NDLT2 e=NDLT3 ==NDLT4 ==NDLT5 NDLT 6 NDLT 7

number of threads

* 25% of the non-zeros require access to elements of x that are on nodelet 0 2
majority of threads converge on nodelet O at roughly same time



4.) Results: Hardware Load Balancing (cont.)
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cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet
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* 25% of the non-zeros require access to elements of x that are on nodelet 0 2
majority of threads converge on nodelet O at roughly same time
*  Nodelet 0 cannot main high thread activity
— migration gueue becomes swamped immediately

— Emu currently throttles # of active threads based on resource availability on nodelet
(i.e., queue sizes)

* Load balancing drastically improved by running with fewer nodelets/threads
— suggests that the load imbalance issue will persist/be worse in multi-node execution
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4.) Results: Matrix Reordering

* Question: can known matrix reordering
techniques offer performance gains, and
mitigate hardware load balancing issues?

* We looked at
— Breadth First Search (BFS)
— METIS
— Randomly permute rows/columns
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* cop20k_A matrix when reordered

RANDOM

METIS
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Bandwidth: Reordering Techniques
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migrations and provides good load balancing
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4.) Results: Matrix Reordering (cont.) )

Bandwidth: Reordering Techniques
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BFS and METIS provide up to 70% more BW over

original

— tend to cluster along main diagonal and produce balanced rows = reduces

migrations and provides good load balancing
Random offers up to 50% more BW over original

— produces balanced rows by uniformly spreading out non-zeros
— incurs many more migrations but provides “natural” hot-spot mitigation
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Bandwidth: Reordering Techniques
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4.) Results: Matrix Reordering (cont.) ’

Bandwidth: Reordering Techniques
Broadwell Xeon - 32 threads
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BFS and METIS only provide up to 16% more BW over original on
cache-memory based system

Random is never better than original, and is usually much worse

— penalty of a cache miss is much more severe when compared to a
migration on Emu
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5.) Conclusions and Future
Work
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5.) Conclusions

* Minimizing migrations is generally a good strategy
on Emu, but work distribution and load balancing is
of similar importance for high performance

* Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads

— data placement and memory access patterns entirely
dictate the work performed by hardware resources

* Matrix reordering on Emu has a larger impact on
SpMV performance than traditional systems
— 70% improvement on Emu Vs 16% on x86
— Random reordering performs very well on Emu
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5.) Future Work

* Evaluate new hardware/software upgrades for
Emu

— faster GC clock, hot-spot mitigation improvements
* Run across multiple nodes
* |nvestigate other sparse storage formats

* Look closer at randomized data distributions

(work by Valiant) and how it could be applied on
Emu
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Questions?

Work published at the 8t Workshop on Irregular Applications:
Architectures and Algorithms (IA”3) for SC18

Contact: tbrolin@cs.umd.edu

The Laboratory for Physical Sciences
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4.) Results: Work Distribution (cont.)

Coefficient of Variation: Mem Instructions Issued Per Nodelet
8 nodelets - 64 threads per nodelet
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* Coefficient of Variation (CV): stdev/mean
* Low CV for memory instructions issued per nodelet
— indication of balanced work, as SpMV is memory bound

* Non-zero approach incurs an average of 1.69x more migrations
— suggests that proper load balancing can be more beneficial than reducing migrations



4.) Results: Matrix Reordering (cont.)

cop20k_A (RANDOM): Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet
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