
Impact of Traditional Sparse
Optimizations on a Migratory Thread

Architecture

Thomas B. Rolinger, Christopher D. Krieger

SC 2018

Outline

1. Motivation

2. Emu Architecture

3. SpMV Optimizations

4. Experiments and Results

5. Conclusions & Future Work

1

1.) Motivation

2

1.) Motivation
• Sparse linear algebra kernels

– Present in many scientific/big-data applications
– Achieving high performance is difficult

• irregular access patterns and weak locality

– Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

• Novel architectures for sparse applications
– Emu: light-weight migratory threads, narrow memory,

near-memory processing

• Our work
– Study impact of existing optimizations for sparse

algorithms on Emu versus cache-memory based systems
– Target algorithm: Sparse Matrix-Vector Multiply (SpMV)

3

1.) Motivation
• Sparse linear algebra kernels

– Present in many scientific/big-data applications
– Achieving high performance is difficult

• irregular access patterns and weak locality

– Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

• Novel architectures for sparse applications
– Emu: light-weight migratory threads, narrow memory,

near-memory processing

• Our work
– Study impact of existing optimizations for sparse

algorithms on Emu versus cache-memory based systems
– Target algorithm: Sparse Matrix-Vector Multiply (SpMV)

3

1.) Motivation
• Sparse linear algebra kernels

– Present in many scientific/big-data applications
– Achieving high performance is difficult

• irregular access patterns and weak locality

– Most approaches target today’s architectures: deep-
memory hierarchies, GPUs, etc.

• Novel architectures for sparse applications
– Emu: light-weight migratory threads, narrow memory,

near-memory processing

• Our work
– Study impact of existing optimizations for sparse

algorithms on Emu versus cache-memory based systems
– Target algorithm: Sparse Matrix-Vector Multiply (SpMV)

• Compressed Sparse Row (CSR)

3

2.) Emu Architecture

4

2.) Emu Architecture

• Gossamer Core (GC)

– general purpose,
cache-less

– supports up to 64
concurrent light-
weight threads

• Narrow Memory

– eight 8-bit channels
rather than a single,
wider 64-bit interface

• Memory-side
Processor

– executes atomic and
remote operations

– remote ops do not
generate migrations

System used in our work:
8 nodelets with 1 GC per nodelet (150MHz)

8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)

5

2.) Emu Architecture

• Gossamer Core (GC)

– general purpose,
cache-less

– supports up to 64
concurrent light-
weight threads

• Narrow Memory

– eight 8-bit channels
rather than a single,
wider 64-bit interface

• Memory-side
Processor

– executes atomic and
remote operations

– remote ops do not
generate migrations

System used in our work:
8 nodelets with 1 GC per nodelet (150MHz)

8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)

5

2.) Emu Architecture

• Gossamer Core (GC)

– general purpose,
cache-less

– supports up to 64
concurrent light-
weight threads

• Narrow Memory

– eight 8-bit channels
rather than a single,
wider 64-bit interface

• Memory-side
Processor

– executes atomic and
remote operations

– remote ops do not
generate migrations

System used in our work:
8 nodelets with 1 GC per nodelet (150MHz)

8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)

5

2.) Emu Architecture

• Gossamer Core (GC)

– general purpose,
cache-less

– supports up to 64
concurrent light-
weight threads

• Narrow Memory

– eight 8-bit channels
rather than a single,
wider 64-bit interface

• Memory-side
Processor

– executes atomic and
remote operations

– remote ops do not
generate migrations

System used in our work:
8 nodelets with 1 GC per nodelet (150MHz)

8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total)

5

2.) Emu Architecture

• Gossamer Core (GC)

– general purpose,
cache-less

– supports up to 64
concurrent light-
weight threads

• Narrow Memory

– eight 8-bit channels
rather than a single,
wider 64-bit interface

• Memory-side
Processor

– executes atomic and
remote operations

– remote ops do not
generate migrations

System used in our work:
1 node: 8 nodelets with 1 GC per nodelet (150MHz)

8GB DDR4 1600MHz per nodelet
64 threads per nodelet (512 total) 12

5

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NQM

6

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NQM

6

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

6

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NQM

6

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NQM

5.) Thread arrives in dest run queue and
waits for available register set on a GC

6

2.) Emu Architecture: Migrations

1.) Thread on GC issues
remote mem access

2.) GC makes request to
NQM to migrate thread

3.) Thread moved into
migration queue

4.) Thread sent over ME
once accepted by NQM

5.) Thread arrives in dest run queue and
waits for available register set on a GC

Thread Context: Roughly 200 bytes (PC,
registers, stack counter, etc.)
Migration Cost: ~2x more than a local
access

7

3.) SpMV Optimizations

7

3.) SpMV Optimizations: Vector Data Layout

• Updating b may require remote writes
– non-zeros on row i are all assigned to a single thread 

b[i] accumulated in register and then updated via single
remote write (or local write)

• SpMV requires one load from x per non-zero
– each access may generate migration  layout of x is

crucial to performance

• Cyclic and Block layouts
– Cyclic: adjacent elements of vector are on different

nodelets (round-robin)  consecutive accesses require
migrations

– Block: equally divide the vectors into fixed-size blocks
and place 1 block on each nodelet

8

3.) SpMV Optimizations: Vector Data Layout

• Updating b may require remote writes
– non-zeros on row i are all assigned to a single thread 

b[i] accumulated in register and then updated via single
remote write (or local write)

• SpMV requires one load from x per non-zero
– each access may generate migration  layout of x is

crucial to performance

• Cyclic and Block layouts
– Cyclic: adjacent elements of vector are on different

nodelets (round-robin)  consecutive accesses require
migrations

– Block: equally divide the vectors into fixed-size blocks
and place 1 block on each nodelet

8

3.) SpMV Optimizations: Vector Data Layout

• Updating b may require remote writes
– non-zeros on row i are all assigned to a single thread 

b[i] accumulated in register and then updated via single
remote write (or local write)

• SpMV requires one load from x per non-zero
– each access may generate migration  layout of x is

crucial to performance

• Cyclic and Block layouts
– Cyclic: adjacent elements of vector are on different

nodelets (round-robin)  consecutive accesses require
migrations

– Block: equally divide the vectors into fixed-size blocks
and place 1 block on each nodelet

8

3.) SpMV Optimizations: Work Distribution
9

3.) SpMV Optimizations: Work Distribution

NDLT 0

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

• Row based
– evenly distribute rows
– block size of b == # rows per

nodelet
– may assign unequal # of non-

zeros to each nodelet

9

3.) SpMV Optimizations: Work Distribution

NDLT 0

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

• Row based
– evenly distribute rows
– block size of b == # rows per

nodelet
– may assign unequal # of non-

zeros to each nodelet

b

9

3.) SpMV Optimizations: Work Distribution

NDLT 0

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

• Row based
– evenly distribute rows
– block size of b == # rows per

nodelet
– may assign unequal # of non-

zeros to each nodelet

b

9

3.) SpMV Optimizations: Work Distribution

NDLT 0

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

• Row based
– evenly distribute rows
– block size of b == # rows

per nodelet
– may assign unequal # of

non-zeros to each nodelet

b
NDLT 0

NDLT 1

NDLT 2

NDLT 3

NDLT 4

NDLT 5

NDLT 6

NDLT 7

• Non-zero based
– “evenly” distribute non-

zeros
– may assign unequal # of

rows to each nodelet
• remote writes may be

required for b

b

9

4.) Experiments and Results

10

4.) Experiments: Matrices
• Evaluated SpMV

across 40 matrices
– Following results

focus on a
representative
subset

– RMAT graph
produced with
a=0.45, b=0.22,
c=0.22

– All matrices are
square

– Non-symmetric
denoted with “*”,
symmetric
matrices stored in
their entirety

11

4.) Results: Vector Data Layouts

0

50

100

150

200

250

300

350

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Cyclic VS Block
8 nodelets - 64 threads per nodelet

CYCLIC BLOCK

• Row-based work distribution used
• Block layout achieves up to 25% more BW

– better at reducing migrations on matrices with “tight” main diagonal (next
slide)  1.4x – 6.3x fewer migrations than cyclic

12

13

4.) Results: Work Distribution

• Block vector data layout used
• Non-zero distribution achieves up to 3.34x more BW

– provides significantly better load balancing
– but incurs more migrations, on average  suggests that load balancing can be equally

important to performance as reducing migrations

0

50

100

150

200

250

300

350

400

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Row VS Non-zero Distribution
8 nodelets - 64 threads per nodelet

ROW NON-ZERO

14

4.) Results: Hardware Load Balancing

• Cannot isolate threads to hardware resources

– Due to migratory nature of Emu threads

– Data layout and memory access pattern dictate the
load balancing of hardware

• Very difficult to control for irregular algorithms

– Hot-spots can form despite best efforts evenly
distribute work

• Example: cop20k_A

15

4.) Results: Hardware Load Balancing

• Cannot isolate threads to hardware resources

– Due to migratory nature of Emu threads

– Data layout and memory access pattern dictate the
load balancing of hardware

• Very difficult to control for irregular algorithms

– Hot-spots can form despite best efforts evenly
distribute work

• Example: cop20k_A

15

4.) Results: Hardware Load Balancing

• Cannot isolate threads to hardware resources

– Due to migratory nature of Emu threads

– Data layout and memory access pattern dictate the
load balancing of hardware

• Very difficult to control for irregular algorithms

– Hot-spots can form despite best efforts to evenly
distribute work

• Example: cop20k_A

15

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

n
u

m
b

e
r

o
f

th
re

ad
s

time (ms)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

4.) Results: Hardware Load Balancing (cont.)

• 25% of the non-zeros require access to elements of x that are on nodelet 0 
majority of threads converge on nodelet 0 at roughly same time

• Nodelet 0 cannot main high thread activity
– migration queue becomes swamped immediately
– Emu currently throttles # of active threads based on resource availability on nodelet

(i.e., queue sizes)

• Load balancing drastically improved by running with fewer nodelets/threads
– suggests that the load imbalance issue will persist/be worse in multi-node execution

16

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

n
u

m
b

e
r

o
f

th
re

ad
s

time (ms)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

4.) Results: Hardware Load Balancing (cont.)

• 25% of the non-zeros require access to elements of x that are on nodelet 0 
majority of threads converge on nodelet 0 at roughly same time

• Nodelet 0 cannot main high thread activity
– migration queue becomes swamped immediately
– Emu currently throttles # of active threads based on resource availability on nodelet

(i.e., queue sizes)

• Load balancing drastically improved by running with fewer nodelets/threads
– suggests that the load imbalance issue will persist/be worse in multi-node execution

16

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

n
u

m
b

e
r

o
f

th
re

ad
s

time (ms)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

4.) Results: Hardware Load Balancing (cont.)

• 25% of the non-zeros require access to elements of x that are on nodelet 0 
majority of threads converge on nodelet 0 at roughly same time

• Nodelet 0 cannot main high thread activity
– migration queue becomes swamped immediately
– Emu currently throttles # of active threads based on resource availability on nodelet

(i.e., queue sizes)

• Load balancing drastically improved by running with fewer nodelets/threads
– suggests that the load imbalance issue will persist/be worse in multi-node execution

16

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

n
u

m
b

e
r

o
f

th
re

ad
s

time (ms)

cop20k_A: Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

4.) Results: Hardware Load Balancing (cont.)

• 25% of the non-zeros require access to elements of x that are on nodelet 0 
majority of threads converge on nodelet 0 at roughly same time

• Nodelet 0 cannot main high thread activity
– migration queue becomes swamped immediately
– Emu currently throttles # of active threads based on resource availability on nodelet

(i.e., queue sizes)

• Load balancing drastically improved by running with fewer nodelets/threads
– suggests that the load imbalance issue will persist/be worse in multi-node execution

16

4.) Results: Matrix Reordering

• Question: can known matrix reordering
techniques offer performance gains, and
mitigate hardware load balancing issues?

• We looked at

– Breadth First Search (BFS)

– METIS

– Randomly permute rows/columns

17

4.) Results: Matrix Reordering (cont.)
• cop20k_A matrix when reordered

METIS

NONE

BFS

RANDOM

18

0

50

100

150

200

250

300

350

400

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Reordering Techniques
8 nodelets - 64 threads per nodelet

NONE RANDOM BFS METIS

4.) Results: Matrix Reordering (cont.)

• BFS and METIS provide up to 70% more BW over original
– tend to cluster along main diagonal and produce balanced rows  reduces

migrations and provides good load balancing

• Random offers up to 50% more BW over original
– produces balanced rows by uniformly spreading out non-zeros
– incurs many more migrations but provides “natural” hot-spot mitigation

19

0

50

100

150

200

250

300

350

400

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Reordering Techniques
8 nodelets - 64 threads per nodelet

NONE RANDOM BFS METIS

4.) Results: Matrix Reordering (cont.)

• BFS and METIS provide up to 70% more BW over original
– tend to cluster along main diagonal and produce balanced rows  reduces

migrations and provides good load balancing

• Random offers up to 50% more BW over original
– produces balanced rows by uniformly spreading out non-zeros
– incurs many more migrations but provides “natural” hot-spot mitigation

19

0

50

100

150

200

250

300

350

400

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Reordering Techniques
8 nodelets - 64 threads per nodelet

NONE RANDOM BFS METIS

4.) Results: Matrix Reordering (cont.)

• BFS and METIS provide up to 70% more BW over original
– tend to cluster along main diagonal and produce balanced rows  reduces

migrations and provides good load balancing

• Random offers up to 50% more BW over original
– produces balanced rows by uniformly spreading out non-zeros
– incurs many more migrations but provides “natural” hot-spot mitigation

19

0

20000

40000

60000

80000

100000

120000

140000

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Reordering Techniques
Broadwell Xeon - 32 threads

NONE RANDOM BFS METIS

4.) Results: Matrix Reordering (cont.)

• BFS and METIS only provide up to 16% more BW over original on
cache-memory based system

• Random is never better than original, and is usually much worse
– penalty of a cache miss is much more severe when compared to a

migration on Emu

20

0

20000

40000

60000

80000

100000

120000

140000

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

M
B

/s

Bandwidth: Reordering Techniques
Broadwell Xeon - 32 threads

NONE RANDOM BFS METIS

4.) Results: Matrix Reordering (cont.)

• BFS and METIS only provide up to 16% more BW over original on
cache-memory based system

• Random is never better than original, and is usually much worse
– penalty of a cache miss is much more severe when compared to a

migration on Emu

20

5.) Conclusions and Future
Work

21

5.) Conclusions
• Minimizing migrations is generally a good strategy

on Emu, but work distribution and load balancing is
of similar importance for high performance

• Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads
– data placement and memory access patterns entirely

dictate the work performed by hardware resources

• Matrix reordering on Emu has a larger impact on
SpMV performance than traditional systems
– 70% improvement on Emu Vs 16% on x86

– Random reordering performs very well on Emu

22

5.) Conclusions
• Minimizing migrations is generally a good strategy

on Emu, but work distribution and load balancing is
of similar importance for high performance

• Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads
– data placement and memory access patterns entirely

dictate the work performed by hardware resources

• Matrix reordering on Emu has a larger impact on
SpMV performance than traditional systems
– 70% improvement on Emu Vs 16% on x86

– Random reordering performs very well on Emu

22

5.) Conclusions
• Minimizing migrations is generally a good strategy

on Emu, but work distribution and load balancing is
of similar importance for high performance

• Very difficult to enforce explicit hardware load
balancing on Emu due to migratory threads
– data placement and memory access patterns entirely

dictate the work performed by hardware resources

• Matrix reordering on Emu has a larger impact on
SpMV performance than traditional systems
– 70% improvement on Emu Vs 16% on x86

– Random reordering performs very well on Emu

22

5.) Future Work
• Evaluate new hardware/software upgrades for

Emu

– faster GC clock, hot-spot mitigation improvements

• Run across multiple nodes

• Investigate other sparse storage formats

• Look closer at randomized data distributions
(work by Valiant) and how it could be applied on
Emu

23

Questions?

Work published at the 8th Workshop on Irregular Applications:
Architectures and Algorithms (IA^3) for SC18

Contact: tbrolin@cs.umd.edu

24

mailto:tbrolin@cs.umd.edu

Back up Slides

4.) Results: Work Distribution (cont.)

• Coefficient of Variation (CV): stdev/mean
• Low CV for memory instructions issued per nodelet

– indication of balanced work, as SpMV is memory bound

• Non-zero approach incurs an average of 1.69x more migrations
– suggests that proper load balancing can be more beneficial than reducing migrations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ford1 cop20k_A webbase-1M rmat nd24k audikw_1

co
e

ff
ic

ie
n

t
o

f
va

ri
at

io
n

Coefficient of Variation: Mem Instructions Issued Per Nodelet
8 nodelets - 64 threads per nodelet

ROW NON-ZERO

4.) Results: Matrix Reordering (cont.)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

n
u

m
b

e
r

o
f

th
re

ad
s

time (ms)

cop20k_A (RANDOM): Threads Residing on Each Nodelet
8 nodelets - 64 threads per nodelet

