|
*** DEPRECATED ***
NOTE: The authors of Python have stopped maintenance of all Python2 versions as of 1 Jan 2020. While the UMD Division of Information Technology continues to provide access to the existing Python2 installs for now, all Python2 installations are ***DEPRECATED*** and will not be upgraded, have new extensions installed, etc. It is likely that Python2 will not be made available when the Zaratan cluster is stood up. All Python users are strongly encouraged to migrate to Python3. |
Package: | python |
---|---|
Description: | Python scripting language |
For more information: | https://www.python.org |
Categories: | |
License: | OpenSource (Python Software Foundation) |
Python is a high-level scripting language.
This module will add the python and related commands to your path.
In case you need to link against this library in your code, the following environmental variables have been defined:
You will probably wish to use these by adding the following flags to your compilation command (e.g. to CFLAGS in your Makefile):
This section lists the available versions of the package pythonon the different clusters.
Version | Module tags | CPU(s) optimized for | GPU ready? |
---|---|---|---|
3.10.10 | python/3.10.10 | icelake, x86_64, zen2 | Y |
3.8.12 | python/3.8.12 | zen2 | Y |
|
*** DEPRECATED ***
NOTE: The authors of Python have stopped maintenance of all Python2 versions as of 1 Jan 2020. While the UMD Division of Information Technology continues to provide access to the existing Python2 installs for now, all Python2 installations are ***DEPRECATED*** and will not be upgraded, have new extensions installed, etc. It is likely that Python2 will not be made available when the Zaratan cluster is stood up. All Python users are strongly encouraged to migrate to Python3. |
When using in conjunction with your own code, you might wish to
note the compiler and MPI libraries used when the python binaries and
packages were built. MPI in particular can be fussy and generate strange
errors if the different parts of the code are linked against different
MPI libraries (even different versions of OpenMPI or the same version of
OpenMPI built with a different compiler), or if the mpirun
command used to start the code is from a different MPI version or was built
with a different compiler. In general, it is best to ensure everything is
built with the same compiler and, if used, the same MPI library.
The system installations of Python include a large number of Python modules to enhance the capability of Python. The table below list those modules and version numbers for the various installations of Python which are made available with the "module load python" or similar commands. (The ones which list a CUDA version are only available if the appropriate CUDA module was loaded before the python module was loaded.)
Python Version | 3.10.10 | 3.10.10 | 3.10.10 | 3.10.10 | 3.10.10 | 3.10.10 | 3.8.12 | 3.8.12 |
---|---|---|---|---|---|---|---|---|
Compiler | gcc/11.3.0 | gcc/11.3.0 | gcc/11.3.0 | gcc/11.3.0 | gcc/11.3.0 | gcc/11.3.0 | gcc/9.4.0 | gcc/9.4.0 |
CPU optimized for | zen2 | icelake | x86_64 | zen2 | icelake | x86_64 | zen2 | zen2 |
CUDA | nocuda | nocuda | nocuda | cuda/12.3.0 | cuda/12.3.0 | cuda/12.3.0 | nocuda | cuda/11.6.2 |
absl-py | 1.4.0 | 1.4.0 | 0.13.0 | 0.13.0 | ||||
aiohttp | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 |
aiohttp-cors | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 |
aiosignal | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 |
alabaster | 0.7.13 | 0.7.13 | 0.7.13 | 0.7.13 | 0.7.13 | 0.7.13 | ||
appdirs | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 |
archspec | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | ||
argon2-cffi | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 |
argon2-cffi-bindings | 21.2.0 | 21.2.0 | 21.2.0 | 21.2.0 | 21.2.0 | 21.2.0 | 21.2.0 | 21.2.0 |
asdf | 2.15.0 | 2.15.0 | 2.15.0 | 2.15.0 | 2.15.0 | 2.15.0 | 2.4.2 | 2.4.2 |
asdf-standard | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | ||
asdf-transform-schemas | 0.3.0 | 0.3.0 | 0.3.0 | 0.3.0 | 0.3.0 | 0.3.0 | ||
asdf-unit-schemas | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | ||
astropy | 5.1 | 5.1 | 4.0.1.post1 | 4.0.1.post1 | ||||
asttokens | 2.2.1 | 2.2.1 | 2.2.1 | 2.2.1 | 2.2.1 | 2.2.1 | ||
astunparse | 1.6.3 | 1.6.3 | 1.6.3 | 1.6.3 | ||||
async-timeout | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 |
attrs | 23.1.0 | 23.1.0 | 23.1.0 | 23.1.0 | 23.1.0 | 23.1.0 | 21.4.0 | 21.4.0 |
audioread | 2.1.8 | 2.1.8 | 2.1.8 | 2.1.8 | 2.1.8 | 2.1.8 | 2.1.8 | 2.1.8 |
Automat | 20.2.0 | 20.2.0 | 20.2.0 | 20.2.0 | 20.2.0 | 20.2.0 | 20.2.0 | 20.2.0 |
azure-common | 1.1.25 | 1.1.25 | 1.1.25 | 1.1.25 | 1.1.25 | 1.1.25 | 1.1.25 | 1.1.25 |
azure-core | 1.26.1 | 1.26.1 | 1.26.1 | 1.26.1 | 1.26.1 | 1.26.1 | 1.21.1 | 1.21.1 |
azure-storage-blob | 12.9.0 | 12.9.0 | 12.9.0 | 12.9.0 | 12.9.0 | 12.9.0 | 12.9.0 | 12.9.0 |
Babel | 2.12.1 | 2.12.1 | 2.12.1 | 2.12.1 | 2.12.1 | 2.12.1 | 2.9.1 | 2.9.1 |
backcall | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 |
backports.entry-points-selectable | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | ||
beautifulsoup4 | 4.12.2 | 4.12.2 | 4.12.2 | 4.12.2 | 4.12.2 | 4.12.2 | 4.10.0 | 4.10.0 |
beniget | 0.4.1 | 0.4.1 | 0.4.1 | 0.4.1 | 0.4.1 | 0.4.1 | ||
bintrees | 2.0.7 | 2.0.7 | 2.0.7 | 2.0.7 | 2.0.7 | 2.0.7 | 2.0.7 | 2.0.7 |
biopython | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.78 | 1.78 |
bleach | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 4.1.0 | 4.1.0 |
blessed | 1.19.0 | 1.19.0 | 1.19.0 | 1.19.0 | 1.19.0 | 1.19.0 | 1.19.0 | 1.19.0 |
blinker | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
boto3 | 1.26.26 | 1.26.26 | 1.26.26 | 1.26.26 | 1.26.26 | 1.26.26 | 1.18.12 | 1.18.12 |
botocore | 1.29.84 | 1.29.84 | 1.29.84 | 1.29.84 | 1.29.84 | 1.29.84 | 1.21.12 | 1.21.12 |
Bottleneck | 1.3.7 | 1.3.7 | 1.3.7 | 1.3.7 | 1.3.7 | 1.3.7 | 1.3.2 | 1.3.2 |
Brotli | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | ||
brotlipy | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | ||
build | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | ||
cachetools | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 4.2.4 | 4.2.4 |
calver | 2022.6.26 | 2022.6.26 | 2022.6.26 | 2022.6.26 | 2022.6.26 | 2022.6.26 | ||
Cartopy | 0.22.0 | 0.22.0 | ||||||
certifi | 2023.5.7 | 2023.5.7 | 2023.5.7 | 2023.5.7 | 2023.5.7 | 2023.5.7 | 2021.10.8 | 2021.10.8 |
cffi | 1.15.1 | 1.15.1 | 1.15.1 | 1.15.1 | 1.15.1 | 1.15.1 | 1.15.0 | 1.15.0 |
cftime | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 | 1.0.3.4 |
chardet | 5.1.0 | 5.1.0 | 5.1.0 | 5.1.0 | 5.1.0 | 5.1.0 | ||
charset-normalizer | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 |
click | 8.1.3 | 8.1.3 | 8.1.3 | 8.1.3 | 8.1.3 | 8.1.3 | 8.0.3 | 8.0.3 |
cloudpickle | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 1.6.0 | 1.6.0 |
cmyt | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 |
colorama | 0.4.6 | 0.4.6 | 0.4.6 | 0.4.6 | 0.4.6 | 0.4.6 | 0.4.4 | 0.4.4 |
colorful | 0.5.4 | 0.5.4 | 0.5.4 | 0.5.4 | 0.5.4 | 0.5.4 | 0.5.4 | 0.5.4 |
colorspacious | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 |
comm | 0.1.3 | 0.1.3 | 0.1.3 | 0.1.3 | 0.1.3 | 0.1.3 | ||
constantly | 15.1.0 | 15.1.0 | 15.1.0 | 15.1.0 | 15.1.0 | 15.1.0 | 15.1.0 | 15.1.0 |
contourpy | 1.0.7 | 1.0.7 | 1.0.7 | 1.0.7 | 1.0.7 | 1.0.5 | 1.0.5 | |
cppy | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | ||
cryptography | 37.0.4 | 40.0.2 | 40.0.2 | 37.0.4 | 37.0.4 | 40.0.2 | 35.0.0 | 35.0.0 |
cssselect | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 |
cutadapt | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 2.10 | 2.10 |
cycler | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 |
Cython | 0.29.36 | 0.29.36 | 0.29.36 | 0.29.36 | 0.29.36 | 0.29.36 | 0.29.24 | 0.29.24 |
dask | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2021.6.2 | 2021.6.2 |
dateutils | 0.6.12 | 0.6.12 | 0.6.12 | 0.6.12 | 0.6.12 | 0.6.12 | ||
debugpy | 1.6.7 | 1.6.7 | 1.6.7 | 1.6.7 | 1.6.7 | 1.6.7 | 1.5.1 | 1.5.1 |
decorator | 5.1.1 | 5.1.1 | 5.1.1 | 5.1.1 | 5.1.1 | 5.1.1 | 5.1.1 | 5.1.1 |
defusedxml | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 |
deprecation | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | ||
dipy | 1.7.0 | 1.7.0 | ||||||
distlib | 0.3.6 | 0.3.6 | 0.3.6 | 0.3.6 | 0.3.6 | 0.3.6 | ||
distributed | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2022.10.2 | 2021.6.2 | 2021.6.2 |
dmri-amico | 1.2.8 | 1.2.8 | ||||||
dmri-commit | 1.4.4 | 1.4.4 | ||||||
dnaio | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | 0.10.0 | 0.4.2 | 0.4.2 |
docutils | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 |
ecos | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | 2.0.12 | ||
editables | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | ||
entrypoints | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
envmodules | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
exceptiongroup | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | ||
executing | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | ||
fasteners | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.17.3 | 0.17.3 |
fastjsonschema | 2.16.3 | 2.16.3 | 2.16.3 | 2.16.3 | 2.16.3 | 2.16.3 | 2.15.1 | 2.15.1 |
fastrlock | 0.8.1 | 0.8.1 | 0.8.1 | 0.8.1 | 0.8.1 | 0.8.1 | 0.5 | 0.5 |
filelock | 3.12.0 | 3.12.0 | 3.12.0 | 3.12.0 | 3.12.0 | 3.12.0 | 3.5.0 | 3.5.0 |
flake8 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 4.0.1 | 4.0.1 |
flatbuffers | 23.5.26 | 23.5.26 | 23.5.26 | 23.5.26 | 23.5.26 | 23.5.26 | 20221207205745 | 20221207205745 |
flit | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | ||
flit_core | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | 3.7.1 | ||
fonttools | 4.37.3 | 4.37.3 | 4.37.3 | 4.37.3 | 4.37.3 | 4.37.3 | ||
frozenlist | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.0 | 1.3.0 |
fsspec | 2023.1.0 | 2023.1.0 | 2023.1.0 | 2023.1.0 | 2023.1.0 | 2023.1.0 | 2021.7.0 | 2021.7.0 |
future | 0.18.2 | 0.18.2 | 0.18.2 | 0.18.2 | 0.18.2 | 0.18.2 | 0.18.2 | 0.18.2 |
gast | 0.5.3 | 0.5.3 | 0.5.3 | 0.5.3 | 0.5.3 | 0.5.3 | 0.4.0 | 0.4.0 |
GDAL | 3.7.0 | 3.7.0 | ||||||
gensim | 4.3.1 | 4.3.1 | 4.3.1 | 4.3.1 | 4.3.1 | 4.3.1 | ||
gevent | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 |
gmpy2 | 2.1.2 | 2.1.2 | ||||||
3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | |||
google-api-core | 1.14.2 | 1.14.2 | 1.14.2 | 1.14.2 | 1.14.2 | 1.14.2 | 1.14.2 | 1.14.2 |
google-auth | 1.6.3 | 1.6.3 | 2.20.0 | 1.6.3 | 1.6.3 | 2.20.0 | 1.6.3 | 1.6.3 |
google-auth-oauthlib | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.4.6 | 0.4.6 |
google-cloud-core | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | ||
google-cloud-storage | 1.18.0 | 1.18.0 | 1.18.0 | 1.18.0 | 1.18.0 | 1.18.0 | ||
google-crc32c | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | ||
google-pasta | 0.2.0 | 0.2.0 | ||||||
google-resumable-media | 2.4.1 | 2.4.1 | 2.4.1 | 2.4.1 | 2.4.1 | 2.4.1 | ||
googleapis-common-protos | 1.58.0 | 1.58.0 | 1.58.0 | 1.58.0 | 1.58.0 | 1.58.0 | 1.55.0 | 1.55.0 |
gpustat | 1.0.0b1 | 1.0.0b1 | ||||||
graphviz | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 |
greenlet | 2.0.2 | 2.0.2 | 2.0.2 | 2.0.2 | 2.0.2 | 2.0.2 | 1.1.2 | 1.1.2 |
GridDataFormats | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 0.5.0 | 0.5.0 |
grpcio | 1.52.0 | 1.52.0 | 1.52.0 | 1.52.0 | 1.52.0 | 1.52.0 | 1.32.0 | 1.32.0 |
gsd | 2.8.0 | 2.8.0 | 2.8.0 | 2.8.0 | 2.8.0 | 2.8.0 | 1.9.3 | 1.9.3 |
h5py | 3.8.0 | 3.8.0 | 3.6.0 | 3.6.0 | ||||
hatchling | 1.14.0 | 1.14.0 | 1.14.0 | 1.14.0 | 1.14.0 | 1.14.0 | ||
HeapDict | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 |
html5lib | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
hyperlink | 21.0.0 | 21.0.0 | 21.0.0 | 21.0.0 | 21.0.0 | 21.0.0 | 21.0.0 | 21.0.0 |
idna | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.3 | 3.3 |
imageio | 2.30.0 | 2.30.0 | 2.30.0 | 2.30.0 | 2.30.0 | 2.30.0 | 2.10.3 | 2.10.3 |
imagesize | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | ||
importlib-metadata | 6.6.0 | 6.6.0 | 6.6.0 | 6.6.0 | 6.6.0 | 6.6.0 | 4.11.1 | 4.11.1 |
importlib-resources | 5.12.0 | 5.12.0 | 5.12.0 | 5.12.0 | 5.12.0 | 5.12.0 | 5.3.0 | 5.3.0 |
incremental | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 | 21.3.0 |
iniconfig | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | 0.0.0 | 0.0.0 |
ipykernel | 6.22.0 | 6.22.0 | 6.22.0 | 6.22.0 | 6.22.0 | 6.22.0 | 6.4.1 | 6.4.1 |
ipython | 8.11.0 | 8.11.0 | 8.11.0 | 8.11.0 | 8.11.0 | 8.11.0 | 7.23.1 | 7.23.1 |
ipython-genutils | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 | 0.2.0 |
ipywidgets | 8.0.2 | 8.0.2 | 8.0.2 | 8.0.2 | 8.0.2 | 8.0.2 | 7.7.0 | 7.7.0 |
isal | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | ||
isodate | 0.6.1 | 0.6.1 | 0.6.1 | 0.6.1 | 0.6.1 | 0.6.1 | 0.6.1 | 0.6.1 |
jax | 0.2.25 | 0.2.25 | ||||||
jaxlib | 0.4.3 | 0.1.74 | 0.1.74 | |||||
jedi | 0.18.1 | 0.18.1 | 0.18.1 | 0.18.1 | 0.18.1 | 0.18.1 | 0.18.1 | 0.18.1 |
Jinja2 | 3.1.2 | 3.1.2 | 3.1.2 | 3.1.2 | 3.1.2 | 3.1.2 | 3.0.3 | 3.0.3 |
jmespath | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 0.10.0 | 0.10.0 |
joblib | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.1.0 | 1.1.0 |
jplephem | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 |
jsonschema | 4.17.3 | 4.17.3 | 4.17.3 | 4.17.3 | 4.17.3 | 4.17.3 | 4.4.0 | 4.4.0 |
jupyter | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | ||
jupyter-client | 7.1.2 | 7.1.2 | 7.1.2 | 7.1.2 | 7.1.2 | 7.1.2 | 7.0.6 | 7.0.6 |
jupyter-console | 6.4.4 | 6.4.4 | 6.4.4 | 6.4.4 | 6.4.4 | 6.4.4 | ||
jupyter-contrib-core | 0.4.2 | 0.4.2 | ||||||
jupyter-contrib-nbextensions | 0.7.0 | 0.7.0 | ||||||
jupyter-core | 4.7.1 | 4.7.1 | ||||||
jupyter-highlight-selected-word | 0.2.0 | 0.2.0 | ||||||
jupyter-nbextensions-configurator | 0.6.1 | 0.6.1 | ||||||
jupyter_core | 5.3.0 | 5.3.0 | 5.3.0 | 5.3.0 | 5.3.0 | 5.3.0 | ||
jupyterlab-pygments | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.1.2 | 0.1.2 |
jupyterlab-widgets | 3.0.3 | 3.0.3 | 3.0.3 | 3.0.3 | 3.0.3 | 3.0.3 | 1.1.0 | 1.1.0 |
Keras-Preprocessing | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | ||
kiwisolver | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.4.4 | 1.3.2 | 1.3.2 |
kwant | 1.4.2 | 1.4.2 | ||||||
labmath | 2.2.0 | 2.2.0 | ||||||
librosa | 0.9.1 | 0.9.1 | ||||||
lightning-utilities | 0.8.0 | 0.8.0 | ||||||
llvmlite | 0.37.0 | 0.37.0 | ||||||
locket | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 0.2.0 | 0.2.0 |
lxml | 4.9.1 | 4.9.1 | 4.9.1 | 4.9.1 | 4.9.1 | 4.9.1 | 4.8.0 | 4.8.0 |
lz4 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | ||
m2r | 0.2.1 | 0.2.1 | 0.2.1 | 0.2.1 | 0.2.1 | 0.2.1 | 0.2.1 | 0.2.1 |
Mako | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.1.6 | 1.1.6 |
Markdown | 3.4.1 | 3.4.1 | 3.4.1 | 3.4.1 | 3.4.1 | 3.4.1 | 3.3.4 | 3.3.4 |
MarkupSafe | 2.1.1 | 2.1.1 | 2.1.1 | 2.1.1 | 2.1.1 | 2.1.1 | 2.0.1 | 2.0.1 |
matlabengine | 9.13.7 | 9.13.7 | ||||||
matplotlib | 3.8.2 | 3.8.2 | 3.8.2 | 3.8.2 | 3.8.2 | 3.4.3 | 3.4.3 | |
matplotlib-inline | 0.1.6 | 0.1.6 | 0.1.6 | 0.1.6 | 0.1.6 | 0.1.6 | 0.1.3 | 0.1.3 |
mccabe | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.6.1 | 0.6.1 |
MDAnalysis | 2.6.1 | 2.6.1 | 2.6.1 | 2.6.1 | 2.2.0 | 2.2.0 | ||
MDAnalysisTests | 2.2.0 | 2.2.0 | ||||||
mercurial | 6.4.5 | 6.4.5 | 6.4.5 | 6.4.5 | 6.4.5 | 6.4.5 | ||
meson | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | 1.1.0 | ||
meson-python | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | ||
mistune | 0.8.4 | 0.8.4 | 0.8.4 | 0.8.4 | 0.8.4 | 0.8.4 | 0.8.4 | 0.8.4 |
mmtf-python | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | ||
mock | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 |
modred | 2.0.4.post6 | 2.0.4.post6 | 2.0.4.post6 | 2.0.4.post6 | 2.0.4.post6 | 2.0.4.post6 | ||
more-itertools | 9.1.0 | 9.1.0 | 9.1.0 | 9.1.0 | 9.1.0 | 9.1.0 | 8.12.0 | 8.12.0 |
mpi4py | 3.1.4 | 3.1.4 | 3.1.4 | 3.1.4 | 3.1.4 | 3.1.2 | 3.1.2 | |
mpmath | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 | 1.2.1 |
mrcfile | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | 1.3.0 | ||
msgpack | 1.0.4 | 1.0.4 | 1.0.4 | 1.0.4 | 1.0.4 | 1.0.4 | 1.0.2 | 1.0.2 |
msrest | 0.6.21 | 0.6.21 | 0.6.21 | 0.6.21 | 0.6.21 | 0.6.21 | 0.6.21 | 0.6.21 |
multidict | 6.0.2 | 6.0.2 | 6.0.2 | 6.0.2 | 6.0.2 | 6.0.2 | 6.0.2 | 6.0.2 |
nbclient | 0.7.2 | 0.7.2 | 0.7.2 | 0.7.2 | 0.7.2 | 0.7.2 | 0.5.5 | 0.5.5 |
nbconvert | 6.5.1 | 6.5.1 | 6.5.1 | 6.5.1 | 6.5.1 | 6.5.1 | 6.5.0 | 6.5.0 |
nbformat | 5.8.0 | 5.8.0 | 5.8.0 | 5.8.0 | 5.8.0 | 5.8.0 | 5.4.0 | 5.4.0 |
nest-asyncio | 1.5.6 | 1.5.6 | 1.5.6 | 1.5.6 | 1.5.6 | 1.5.6 | 1.5.4 | 1.5.4 |
netCDF4 | 1.5.3 | 1.5.3 | ||||||
networkx | 2.8.6 | 2.8.6 | 2.8.6 | 2.8.6 | 2.8.6 | 2.8.6 | 2.7.1 | 2.7.1 |
nibabel | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 4.0.2 | 3.2.1 | 3.2.1 |
nltk | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | ||
notebook | 6.4.12 | 6.4.12 | 6.4.12 | 6.4.12 | 6.4.12 | 6.4.12 | 6.4.11 | 6.4.11 |
numba | 0.54.0 | 0.54.0 | ||||||
numexpr | 2.8.3 | 2.8.3 | 2.8.3 | 2.8.3 | 2.8.3 | 2.8.3 | 2.8.3 | 2.8.3 |
numpy | 1.26.2 | 1.26.2 | 1.26.2 | 1.26.2 | 1.26.2 | 1.26.2 | 1.19.5 | 1.19.5 |
nvidia-ml-py3 | 7.352.0 | 7.352.0 | ||||||
oauthlib | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.1 | 3.1.1 |
opencensus | 0.7.10 | 0.7.10 | 0.7.10 | 0.7.10 | 0.7.10 | 0.7.10 | ||
opencensus-context | 0.1.1 | 0.1.1 | 0.1.1 | 0.1.1 | 0.1.1 | 0.1.1 | 0.1.1 | 0.1.1 |
OpenMM | 7.7.0 | 7.7.0 | ||||||
opt-einsum | 3.3.0 | 3.3.0 | 3.3.0 | 3.3.0 | 3.3.0 | 3.3.0 | 3.3.0 | 3.3.0 |
optax | 0.1.4 | 0.1.4 | ||||||
OWSLib | 0.25.0 | 0.25.0 | ||||||
packaging | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 21.0 | 21.0 |
pandas | 1.5.3 | 1.5.3 | 1.5.3 | 1.5.3 | 1.5.3 | 1.5.3 | 1.3.4 | 1.3.4 |
pandocfilters | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 | 1.5.0 |
parso | 0.8.3 | 0.8.3 | 0.8.3 | 0.8.3 | 0.8.3 | 0.8.3 | 0.8.2 | 0.8.2 |
partd | 1.4.0 | 1.4.0 | 1.4.0 | 1.4.0 | 1.4.0 | 1.4.0 | 1.1.0 | 1.1.0 |
pathspec | 0.11.1 | 0.11.1 | 0.11.1 | 0.11.1 | 0.11.1 | 0.11.1 | ||
patsy | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.2 | 0.5.1 | 0.5.1 |
pep517 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | ||
petsc4py | 3.16.6 | 3.16.6 | ||||||
pexpect | 4.8.0 | 4.8.0 | 4.8.0 | 4.8.0 | 4.8.0 | 4.8.0 | 4.8.0 | 4.8.0 |
physics-tenpy | 1.0.1 | 1.0.1 | ||||||
pickleshare | 0.7.5 | 0.7.5 | 0.7.5 | 0.7.5 | 0.7.5 | 0.7.5 | 0.7.5 | 0.7.5 |
Pillow | 9.5.0 | 9.5.0 | 9.5.0 | 9.5.0 | 9.5.0 | 9.5.0 | 8.4.0 | 8.4.0 |
pip | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 21.1.1 | 21.1.1 |
pkgconfig | 1.5.5 | 1.5.5 | 1.5.5 | 1.5.5 | 1.5.5 | 1.5.5 | ||
platformdirs | 3.5.0 | 3.5.0 | 3.5.0 | 3.5.0 | 3.5.0 | 3.5.0 | ||
pluggy | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 |
ply | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 | 3.11 | ||
poetry-core | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | 1.2.0 | ||
pooch | 1.5.2 | 1.5.2 | ||||||
prometheus-client | 0.14.1 | 0.14.1 | 0.14.1 | 0.14.1 | 0.14.1 | 0.14.1 | 0.12.0 | 0.12.0 |
prompt-toolkit | 3.0.31 | 3.0.31 | 3.0.31 | 3.0.31 | 3.0.31 | 3.0.31 | 3.0.29 | 3.0.29 |
protobuf | 4.24.3 | 4.24.3 | 4.24.3 | 3.17.3 | 3.17.3 | 4.24.3 | 3.18.1 | 3.18.1 |
psutil | 5.9.4 | 5.9.4 | 5.9.4 | 5.9.4 | 5.9.4 | 5.9.4 | 5.8.0 | 5.8.0 |
ptyprocess | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 | 0.7.0 |
pure-eval | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | 0.2.2 | ||
py | 1.11.0 | 1.11.0 | 1.11.0 | 1.11.0 | 1.11.0 | 1.11.0 | 1.11.0 | 1.11.0 |
pyaml | 21.8.3 | 21.8.3 | ||||||
pyarrow | 10.0.1 | 10.0.1 | 10.0.1 | |||||
pyasn1 | 0.4.8 | 0.4.8 | 0.4.8 | 0.4.8 | 0.4.8 | 0.4.8 | 0.4.8 | 0.4.8 |
pyasn1-modules | 0.2.8 | 0.2.8 | 0.2.8 | 0.2.8 | 0.2.8 | 0.2.8 | 0.2.8 | 0.2.8 |
pybind11 | 2.10.1 | 2.10.1 | 2.10.1 | 2.10.1 | 2.10.1 | 2.10.1 | 2.6.2 | 2.6.2 |
pycodestyle | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.8.0 | 2.8.0 |
pycparser | 2.21 | 2.21 | 2.21 | 2.21 | 2.21 | 2.21 | 2.20 | 2.20 |
pycuda | 2021.1 | 2021.1 | ||||||
pyDeprecate | 0.3.1 | 0.3.1 | ||||||
pydicom | 2.3.0 | 2.3.0 | 2.3.0 | 2.3.0 | 2.3.0 | 2.3.0 | ||
pydot | 1.4.2 | 1.4.2 | 1.4.2 | 1.4.2 | 1.4.2 | 1.4.2 | ||
pyerfa | 2.0.0.1 | 2.0.0.1 | ||||||
pyFFTW | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | ||
pyflakes | 3.0.1 | 3.0.1 | 3.0.1 | 3.0.1 | 3.0.1 | 3.0.1 | 2.4.0 | 2.4.0 |
Pygments | 2.13.0 | 2.13.0 | 2.13.0 | 2.13.0 | 2.13.0 | 2.13.0 | 2.10.0 | 2.10.0 |
pygraphviz | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | ||
PyJWT | 2.4.0 | 2.4.0 | 2.4.0 | 2.4.0 | 2.4.0 | 2.4.0 | 2.1.0 | 2.1.0 |
PyMUMPS | 0.3.2 | 0.3.2 | 0.3.2 | 0.3.2 | 0.3.2 | 0.3.2 | ||
pyOpenSSL | 19.0.0 | 19.0.0 | 19.0.0 | 19.0.0 | 19.0.0 | 19.0.0 | ||
pyparsing | 3.0.9 | 3.0.9 | 3.0.9 | 3.0.9 | 3.0.9 | 3.0.9 | 2.4.7 | 2.4.7 |
pyproj | 3.6.1 | 3.6.1 | ||||||
pyproject-metadata | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | 0.7.1 | ||
pyproject_hooks | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | ||
PyQt5 | 5.15.9 | 5.15.9 | 5.15.9 | 5.15.9 | 5.15.9 | 5.15.9 | 5.13.1 | 5.13.1 |
PyQt5-sip | 12.12.1 | 12.12.1 | 12.12.1 | 12.12.1 | 12.12.1 | 12.12.1 | ||
pyrsistent | 0.19.3 | 0.19.3 | 0.19.3 | 0.19.3 | 0.19.3 | 0.19.3 | 0.18.0 | 0.18.0 |
pyshp | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | ||
PySocks | 1.7.1 | 1.7.1 | 1.7.1 | 1.7.1 | 1.7.1 | 1.7.1 | 1.7.1 | 1.7.1 |
pytest | 7.3.2 | 7.3.2 | 7.3.2 | 7.3.2 | 6.2.5 | 6.2.5 | ||
pytest-runner | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | 6.0.0 | ||
python-dateutil | 2.8.2 | 2.8.2 | 2.8.2 | 2.8.2 | 2.8.2 | 2.8.2 | 2.8.2 | 2.8.2 |
pythran | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | ||
pytools | 2021.2.9 | 2021.2.9 | ||||||
pytorch-lightning | 2.0.0 | 2.0.0 | ||||||
pytz | 2022.2.1 | 2022.2.1 | 2022.2.1 | 2022.2.1 | 2022.2.1 | 2022.2.1 | 2021.3 | 2021.3 |
PyWavelets | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | 1.4.1 | 1.1.1 | 1.1.1 |
PyYAML | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
pyzmq | 25.0.2 | 25.0.2 | 25.0.2 | 25.0.2 | 25.0.2 | 25.0.2 | 22.3.0 | 22.3.0 |
QScintilla | 2.11.6 | 2.11.6 | ||||||
qsymm | 1.2.7 | 1.2.7 | 1.2.7 | 1.2.7 | 1.2.7 | 1.2.7 | ||
qtconsole | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 | 5.2.0 |
QtPy | 1.11.2 | 1.11.2 | 1.11.2 | 1.11.2 | 1.11.2 | 1.11.2 | ||
regex | 2022.8.17 | 2022.8.17 | 2022.8.17 | 2022.8.17 | 2022.8.17 | 2022.8.17 | 2020.11.13 | 2020.11.13 |
reportlab | 4.0.4 | 4.0.4 | 4.0.4 | 4.0.4 | 4.0.4 | 4.0.4 | ||
requests | 2.28.2 | 2.28.2 | 2.28.2 | 2.28.2 | 2.28.2 | 2.28.2 | 2.26.0 | 2.26.0 |
requests-oauthlib | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.1 | 1.3.0 | 1.3.0 |
resampy | 0.2.2 | 0.2.2 | ||||||
rsa | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 4.7.2 | 4.7.2 |
rst2pdf | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | ||
s3transfer | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | 0.5.0 | 0.5.0 |
scikit-image | 0.18.3 | 0.18.3 | ||||||
scikit-learn | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.2.2 | 1.0.1 | 1.0.1 |
SciPy | 1.7.1 | 1.7.1 | ||||||
scipy | 1.10.1 | 1.10.1 | 1.10.1 | 1.10.1 | 1.10.1 | 1.10.1 | ||
seaborn | 0.12.2 | 0.12.2 | 0.12.2 | 0.12.2 | 0.11.2 | 0.11.2 | ||
semantic-version | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.10.0 | 2.8.2 | 2.8.2 |
Send2Trash | 1.8.0 | 1.8.0 | 1.8.0 | 1.8.0 | 1.8.0 | 1.8.0 | 1.8.0 | 1.8.0 |
setproctitle | 1.1.10 | 1.1.10 | ||||||
setuptools | 63.4.3 | 64.0.0 | 63.4.3 | 68.0.0 | 68.0.0 | 63.4.3 | 62.3.2 | 62.3.2 |
setuptools-rust | 1.5.1 | 1.5.1 | 1.5.1 | 1.5.1 | 1.5.1 | 1.5.1 | 0.12.1 | 0.12.1 |
setuptools-scm | 7.0.5 | 7.0.5 | 7.0.5 | 7.0.5 | 7.0.5 | 7.0.5 | ||
shapely | 2.0.2 | 2.0.2 | 2.0.2 | 2.0.2 | ||||
sip | 6.7.9 | 6.7.9 | 6.7.9 | 6.7.9 | 6.7.9 | 6.7.9 | ||
six | 1.16.0 | 1.16.0 | 1.16.0 | 1.16.0 | 1.16.0 | 1.16.0 | 1.16.0 | 1.16.0 |
slepc4py | 3.16.3 | 3.16.3 | ||||||
smart-open | 5.2.1 | 5.2.1 | 5.2.1 | 5.2.1 | 5.2.1 | 5.2.1 | ||
smartypants | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | ||
snowballstemmer | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 2.2.0 | 2.0.0 | 2.0.0 |
sortedcontainers | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 | 2.1.0 |
soundfile | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 | 0.11.0 |
soupsieve | 2.3.2.post1 | 2.3.2.post1 | 2.3.2.post1 | 2.3.2.post1 | 2.3.2.post1 | 2.3.2.post1 | 2.2.1 | 2.2.1 |
spams | 2.6.2.5 | 2.6.2.5 | 2.6.2.5 | 2.6.2.5 | ||||
Sphinx | 7.0.1 | 7.0.1 | 7.0.1 | 7.0.1 | 7.0.1 | 7.0.1 | ||
sphinxcontrib-applehelp | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | ||
sphinxcontrib-devhelp | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | 1.0.2 | ||
sphinxcontrib-htmlhelp | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | 2.0.0 | ||
sphinxcontrib-jsmath | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | 1.0.1 | ||
sphinxcontrib-programoutput | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | ||
sphinxcontrib-qthelp | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | 1.0.3 | ||
sphinxcontrib-serializinghtml | 1.1.5 | 1.1.5 | 1.1.5 | 1.1.5 | 1.1.5 | 1.1.5 | ||
stack-data | 0.5.0 | 0.5.0 | 0.5.0 | 0.5.0 | 0.5.0 | 0.5.0 | ||
statsmodels | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.13.2 | 0.12.2 | 0.12.2 |
sympy | 1.11.1 | 1.11.1 | 1.11.1 | 1.11.1 | 1.11.1 | 1.11.1 | 1.8 | 1.8 |
tables | 3.7.0 | 3.7.0 | 3.7.0 | 3.7.0 | 3.7.0 | 3.7.0 | 3.6.1 | 3.6.1 |
tabulate | 0.8.9 | 0.8.9 | ||||||
tblib | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 |
tensorboard | 2.7.0 | 2.7.0 | ||||||
tensorboard-data-server | 0.6.1 | 0.6.1 | ||||||
tensorboard-plugin-wit | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.0 | 1.8.0 |
tensorboardX | 2.5.1 | 2.5.1 | ||||||
termcolor | 1.1.0 | 1.1.0 | ||||||
terminado | 0.12.1 | 0.12.1 | 0.12.1 | 0.12.1 | 0.12.1 | 0.12.1 | 0.12.1 | 0.12.1 |
testpath | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | 0.6.0 | ||
threadpoolctl | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.1.0 | 3.0.0 | 3.0.0 |
tidynamics | 1.1.2 | 1.1.2 | 1.1.2 | 1.1.2 | ||||
tifffile | 2021.11.2 | 2021.11.2 | ||||||
tinyarray | 1.2.4 | 1.2.4 | 1.2.4 | 1.2.4 | 1.2.4 | 1.2.4 | 1.2.3 | 1.2.3 |
tinycss2 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 |
tinycudann | 1.6 | 1.6 | ||||||
toml | 0.10.2 | 0.10.2 | 0.10.2 | 0.10.2 | 0.10.2 | 0.10.2 | 0.10.2 | 0.10.2 |
tomli | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | 2.0.1 | 1.2.1 | 1.2.1 |
tomli-w | 1.0.0 | 1.0.0 | ||||||
tomli_w | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | 1.0.0 | ||
tomlkit | 0.11.4 | 0.11.4 | 0.11.4 | 0.11.4 | 0.11.4 | 0.11.4 | ||
toolz | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.12.0 | 0.9.0 | 0.9.0 |
torch | 2.0.1 | 2.0.1 | 1.11.0 | |||||
torchaudio | 2.0.2+31de77d | 2.0.2 | 0.11.0 | |||||
torchmetrics | 0.11.4 | 0.11.4 | 0.7.0 | |||||
torchsummary | 1.5.1 | 1.5.1 | 1.5.1 | |||||
torchvision | 0.15.2 | 0.15.2 | 0.12.0a0 | |||||
tornado | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 |
tqdm | 4.65.0 | 4.65.0 | 4.65.0 | 4.65.0 | 4.65.0 | 4.65.0 | 4.62.3 | 4.62.3 |
traitlets | 5.9.0 | 5.9.0 | 5.9.0 | 5.9.0 | 5.9.0 | 5.9.0 | 5.1.1 | 5.1.1 |
trove-classifiers | 2023.3.9 | 2023.3.9 | 2023.3.9 | 2023.3.9 | 2023.3.9 | 2023.3.9 | ||
Twisted | 21.7.0 | 21.7.0 | 21.7.0 | 21.7.0 | 21.7.0 | 21.7.0 | 21.7.0 | 21.7.0 |
typing-extensions | 4.1.1 | 4.1.1 | ||||||
typing_extensions | 4.5.0 | 4.5.0 | 4.5.0 | 4.5.0 | 4.5.0 | 4.5.0 | ||
unyt | 2.9.2 | 2.9.2 | 2.9.2 | 2.9.2 | ||||
urllib3 | 1.26.12 | 1.26.12 | 1.26.12 | 1.26.12 | 1.26.12 | 1.26.12 | 1.26.6 | 1.26.6 |
urllib3-secure-extra | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | ||
virtualenv | 20.22.0 | 20.22.0 | 20.22.0 | 20.22.0 | 20.22.0 | 20.22.0 | ||
voluptuous | 0.11.7 | 0.11.7 | ||||||
wcwidth | 0.2.5 | 0.2.5 | 0.2.5 | 0.2.5 | 0.2.5 | 0.2.5 | 0.2.5 | 0.2.5 |
webencodings | 0.5.1 | 0.5.1 | 0.5.1 | 0.5.1 | 0.5.1 | 0.5.1 | 0.5.1 | 0.5.1 |
Werkzeug | 3.0.0 | 3.0.0 | 2.0.2 | 2.0.2 | ||||
wheel | 0.37.1 | 0.37.1 | 0.37.1 | 0.37.1 | 0.37.1 | 0.37.1 | ||
widgetsnbextension | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 4.0.3 | 3.6.0 | 3.6.0 |
wrapt | 1.14.1 | 1.14.1 | ||||||
xgboost | 1.5.2 | 1.5.2 | ||||||
xopen | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 1.6.0 | 0.8.4 | 0.8.4 |
yapf | 0.30.0 | 0.30.0 | ||||||
yarl | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.8.1 | 1.7.2 | 1.7.2 |
yt | 4.1.2 | 4.1.2 | 4.1.2 | 4.1.2 | ||||
zict | 3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | 3.0.0 | 1.0.0 | 1.0.0 |
zipp | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.8.1 | 3.6.0 | 3.6.0 |
zope.interface | 5.4.0 | 5.4.0 | 5.4.0 | 5.4.0 | 5.4.0 | 5.4.0 | 5.4.0 | 5.4.0 |
In addition, a number of other packages, C libraries, applications, etc. provide a Python API, etc. through a module. As these package are more than just Python modules, and indeed in many cases most users of the package are not accessing the Python modules they define, these packages have their own modulefiles. Generally, you can access these by loading their corresponding modulefiles before starting python (normally it should not matter whether you load the package module before or after loading python). These packages are:
This section lists various software packages containing python modules which can be imported in your python code, after the corresponding environmental module is loaded.
Package Name | Description | Supported CPUs | GPU ready? |
---|---|---|---|
charm4py | Charm4py: distributed/parallel programing framework for Python | zen, zen2 | Yes |
charmm | charmm: Chemistry at HARvard Macromolecular Mechanics. | zen2 | Yes |
cupy | cupy: a Python array library accelerated with NVIDIA CUDA | zen2 | Yes |
cython | cython: Compiler for writing C extensions for Python | icelake, x86_64, zen, zen2 | |
jupyter | jupyter: The Jupyter Notebook application | icelake, x86_64, zen, zen2 | |
magics | magics: meteorological plotting software | icelake, zen2 | Yes |
openmm | openmm: A high-performance toolkit for molecular simulation. | icelake, zen2 | Yes |
pyray | pyray: Framework for scaling AI and Python applications | zen2 | |
pytorch | pytorch: Open-source machine learning library | icelake, zen2 | Yes |
tensorflow | tensorflow: Open-source software library for machine intelligence | icelake, zen, zen2 | Yes |
trilinos | Trilinos: Solvers collection including linear, non-linear, optimization, and transient solvers | zen2 |
Python's capabilities can be significantly enhanced through the addition
of modules. Code can import
a module to enable its functionality.
The supported python interpretters on the system have a selection of modules preinstalled. If a module you are interested in is not in that list, you can either install a personal copy of the module for yourself, or request that it be installed site wide. We will make reasonable efforts to accomodate such requests as staffing resources allow.
The mechanism for installing a module is of course dependent on the module being installed, but most modern python modules support the setup.py mechanism described below. But many packages will support installing via pip and virtual environments as well, and that is typically easier.
Note: Users might wish to look at Installing python modules using virtual environments first, as that is often easier.
The standard procedure for installing your own copy of a module is:
module load python/X.Y.Z
to select the version of python
you wish to use.mkdir ~/.mypython
will work.
You should also create lib
and lib/python
directories
beneath it, e.g. mkdir ~/.mypython/lib ~/.mypython/lib/python
.
~/.mypython
, something like
setenv PYTHONPATH ~/.mypython/lib/python
(bash/bourne shell
users should do PYTHONPATH=~/.mypython/lib/python; export PYTHONPATH
). You probably want to add this to your .cshrc.mine
or .bashrc.mine
.setup.py
python setup.py install --home ~/.mypython
If all goes well, the module should now be installed under
~/.mypython
or wherever you specified. If there are executables
associated with it, they should be in ~/.mypython/bin
. You
should be able to import the module in python now (this assumes that
PYTHONPATH is set as indicated above).
Of course, not all modules install easily. Unfortunately, the install process can fail in far too many ways than can be reasonably enumerated. If you are comfortable with building modules, you might find reasonable guidance from error messages to assist you in getting the module to build, but it is probably easiest to just request the module be installed to the system libraries.
Although the standard procedure described above works for most cases, there
are cases where more separation is required. Python3 includes a
venv
module which
allows you to create a fully independent virtual python environment,
copying the python executables and standard and system libraries to your own
directory, and allowing you to add/update/delete from there. This has the
advantage that the virtualenv is almost completely isolated; so changes made
in the system installation of python are unlikely to impact your virtualenv.
This can be important if you have a code or application which requires e.g.
version 1.6 of the foo package, but will break if it is upgraded to 1.7 (it
appears that when using standard scheme above using PYTHONPATH, the system
library directories are ALWAYS searched before PYTHONPATH, meaning that method
can be used to add modules, but not to upgrade or downgrade modules).
However, the virtualenv takes up a significant amount of diskspace, and the isolation from the system python can be a negative as well as upgrades and/or new modules added to the system python will NOT be visible --- this is good when as in the example above it breaks something, but most of the time the upgrades are desirable.
To install a package with the virtualenv
mechanism, you
must first create a virtual python environment.
module load python/X.Y.Z
to select the version of python
you wish to use in this virtual environment.my-venv
subdirectory of your home directory (e.g. ~/my-venv
).
python -mvenv --system-site-packages ~/my-venv
:
This variant will give the virtual environment access to system
installed python packages, e.g. numpy, scipy and matplotlib. This
is the easiest version, but as it is less isolated from the system
python installation it can lead to problems if there are version
compatibility issues.
python -mvenv ~/my-venv
:
This variant will isolate
the resulting environment from system packages. This is the safest
approach, but may require you to install packages available on the
system, and can be trickier in some cases.
mkdir ~/my-venv
), and then unset the PYTHONHOME
variable set by the module
load command (i.e. unsetenv PYTHONHOME
for the csh and tcsh
shells, and unset PYTHONHOME
for bash). Then issue either of the
following commands:
virtualenv --system-site-packages ~/my-venv
virtualenv ~/my-venv
--system-site-packages
flag, behaves
like the python3 version with the same flag --- the system packages are still
available. The second version isolates your virutal environment from the
system packages.
source ~/venv/bin/activate.csh
for csh or tcsh shellssource ~/venv/bin/activate
for bash shellsdeactivate
will deactivate the virtual environment.
Once the virtual environment is created and activated, installation is
usually relatively simple using the pip
command. You should
just be able to do pip install NameOfPackage
. Pip
should take care of downloading the package and installing it for you.
Of course, not all modules install easily. Unfortunately, the install process can fail in far too many ways than can be reasonably enumerated. If you are comfortable with building modules, you might find reasonable guidance from error messages to assist you in getting the module to build, but it is probably easiest to just request the module be installed to the system libraries.
NOTE: We generally recommend that you try installing your own Python packages using one of the methods above, i.e. either using setup.py or using the venv module and virtual environments rather than using conda.
Conda is another option for installing python and other packages, but it does even more separation and isolation than the venv method. This can either be an advantage or a liability depending on the use case. This isolation means that you are not constrained but what system staff have installed on the cluster, but it also means it is very difficult if not impossible to take advantage of any packages system staff have installed on the cluster. Also, since you are relying on an entire environment which you installed, the ability of HPC staff to provide assistance should there be issues is limited. Therefore, we encourage users to try one of the other methods if such is feasible.
NOTE:The Anaconda distribution of Python and R is restrictively licensed. The Anaconda company states that the use of Anaconda's offerings at an organization of more than 200 employees requires a Business or Enterprise license. As the Univesity of Maryland does not have such a license, the use of the anaconda distribution or its repositories at UMD (outside of use in a formally scheduled curriculum based course) is not free and is not allowed, even though Anaconda is not currently blocking such accesses via technological means. I.e., the fact that your conda installation commands succeed does not mean that your use of the command is consistent with the Anaconda company's terms of use. See e.g. the Anaconda blog for more information regarding Anaconda licensing.
Due to the license restrictions above, we encourage users to use the miniforge/mambaforge installer which pulls packages from the conda-forge repository, which is not covered by the restrictive Anaconda license and is free to use. (You still may need to check for any This provides similar functionality to miniconda without the license restrictions.
Miniconda is a subset of Anaconda, without some extras like Anaconda Navigator, etc. By default, it pulls packages from the default Anaconda repositories, which requires licensing from Anaconda. The actual conda program which installs packages is free to use, but only if you are downloading packages from repositories which are free to use. If you insist on using miniconda, please be sure to remove the default channel (as well as any subchannels of the default channel) as these are restrictively licensed and require licesnses, and replace it with conda-forge channel, e.g.
conda config --show channels
conda config --remove channels defaults
# You might also need to remove subchannels like ananconda, main, r, pro, etc
conda config --add channels conda-forge
But we encourage you to use miniforge/mambaforge instead.
To install python packages using conda, you should usually follow a process like outlined below:
~/scratch/condaroot
. Create that directory
if it does not already exist.
condaroot
directory.
cp ~/.bashrc ~/.bashrc.HOLD
.
You might wish to do similar for .cshrc
and other
init dot files if they exist.
cd ~/scratch/condaroot; bash Mambaforge-X.Y.Z-A-Linux-s86_64.sh -p mambaforge-X.Y.z
This will install mambaforge to the
mabaforge-X.Y.Z
subdirectory of
the directory you ran the script from
(~/scratch/condaroot
). The
script will ask some questions, ansering yes to all should
generally work.
~/.bashrc
and
possibly some other dot files. Although you can leave things
like that, in which case conda will be initialized in
every shell whether it needs it or not (and potentially
causing delays in shell startup), we recommend
that you copy the modifications made to the initialization
scripts to a conda specific script (e.g.
cp ~/.bashrc ~/bashrc.conda; cp ~/.bashrc.HOLD ~/.bashrc
and edit the new ~/bashrc.conda
to remove the
lines before the # >>> conda initialize >>>
line.
You can then source this file whenever you wish to use conda.
source ~/bashrc.conda
.
cd ~/scratch/condaroot; conda create -n myenv
This will create a conda environment myenv
;
we recommend you choose a more meaningful name.
conda activate myenv
, replacing
myenv with the name of the environment to activate.
pip
. Do
conda install pip
.
pip install --upgrade pip
pip install PACKAGE_NAMNE
.
Agg
(for Anti-Grain Geometry engine)
which can produce PNG
files, Cairo
and
Gdk
are other options. Use would be something like:
import matplotlib
# This needs to be done *before* importing pyplot or pylab
matplotlib.use('Agg')
import matplotlib.pyplot as plt
#Do your plotting, e.g.
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))
fig.savefig('test.png')
The most recent versions of Python installed (e.g. 3.5.1) provide a python module called "numba". Numba allows for certain portions of python code to be compiled to a lower-level machine code to improve performance, in many cases simply by adding the directive "@jit" before the function to compile. Depending on the function, one might achieve order of magnitude sized performance gains. E.g. (example taken from wikipedia)
from numba import jit
@jit
def sum1d(my_array):
total = 0.0
for i in range(my_array.shape[0])
total += my_array[i]
return total
Here, the addition of the "@jit" (for just-in-time compilation) can result in code running 100-200 times faster than the original on a long Numpy array, and up to 30% faster than Numpy's builtin "sum()" function, on standard CPU cores.
Some codes can perform even better on GPUs, and Numba can make this fairly simple by importing "cuda" from numba and using "cuda.jit" in place of "jit". There are constraints imposed when using GPUs, so not every code can be easily converted for GPU use.
To use Numba with GPUs on the Deepthought clusters, you will need to
The details of using Numba, and especially using Numba with CUDA, is well beyond the scope of this document. Some useful links for more information are:
If you wish to take advantage of the multiple cores and even many nodes available on High Performance Computing (HPC) clusters, it is useful to use the Message Passing Interface (MPI) for coordinate and communicate among the various processes, a standard and ubiquitous programming methodology for distributed memory parallelism.
There is a package mpi4py
available on all Pythons installed
system-wide on the Deepthought clusters which basically makes the various
MPI calls available to python code. Because mpi4py basically mimics the
function calls in the standard MPI library/API, it makes the task of
transcribing algorithms from python to/from C much easier.
When you have python code (e.g. my-mpi4py-script.py
)
designed to use MPI via mpi4py, you will normally
wish to execute the python code using the mpirun
command.
It is important that you use the mpirun
command from the SAME
MPI library as was used to build mpi4py
for the python version
you are running --- typically this will mean using module load
to load the correct gcc compiler and openmpi version as used in building
the python interpretter and modules, as listed in the
version information table at the top of this
document. E.g., a job submission script to launch
my-mpi4py-script.py
on 40 cores using python/3.5.1 might look
like:
#!/bin/bash
#Assume will be finished in no more than 8 hours
#SBATCH -t 8:00:00
#Launch on 40 cores distributed over as many nodes as needed
#SBATCH -n 40
#Assume need 6 GB/core (6144 MB/core)
#SBATCH --mem-per-core=6144
#Make sure module cmd gets defined
. ~/.profile
#Load required modules
module load python/3.5.1
#Load correct gcc (4.9.3) and mpi (openmpi/1.8.6) for python/3.5.1
module load gcc/4.9.3
module load openmpi/1.8.6
#Normally do not need to give -n 40, as openmpi will determine from Slurm
#environment variables
mpirun mp-mpi4py-script.py
Although exploring mpi4py is beyond the scope of this document, we do provide some on-line tutorials, etc., to help if you wish to explore mpi4py further: