
4/14/25

1

11. Low Level File Input / Output
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Scalar data types
– Arrays and strings
– Functions
– Random number generation
– Control flow
– Structuring complex programs
– Formatted and character file I/O

• Where we’re going today
– File Input/Output (low level)

• Where we’re going next
– File Input/Output (high level)

2

2

http://ter.ps/enee140

4/14/25

2

Review: Nested Loops

• You can nest loops
for (i=1; i<=3; i++) {
 for (j=1; j<=3; j++) {
 printf("%dx%d=%2d\t", i, j, i*j);
 }
 printf("\n"); // ready for next line
}

• Output
1x1= 1 1x2= 2 1x3= 3
2x1= 2 2x2= 4 2x3= 6
3x1= 3 3x2= 6 3x3= 9

4

4

Two-Dimensional Arrays

• Two-dimensional arrays
int a[3][4]; int array with 3 rows and 4 columns (12 elements)
– Think of this as 3 arrays with 4 elements each

• Working with 2D arrays
a[0][0] = 0; access element on first row and first column
a[1][2] = 0; access element on row 1 and column 2
a[0][4] = 0; error: index out of bounds
a[3][0] = 0; error: index out of bounds
– Use 2D arrays to represent matrices

• Arrays with 3, 4, 5, etc. dimensions
int a[2][3][4]; 3D array with 24 elements

5

5

4/14/25

3

Review: Binary Representation

• Numbers in base B

• Examples
– Binary (base 2): digits 0 and 1

• 00112 = 1*2 + 1 = 310

– Octal (base 8): digits 0, 1, 2, 3, 4, 5, 6, 7
• 148 = 1*8 + 4 = 1210

• Geeky joke:
– Why do programmers confuse Halloween and Christmas?

6

N = ni ⋅B
i∑

6

Review: Bitwise Operations

• Operators for manipulating bits:
§ & bitwise AND
§ | bitwise OR
§ ^ bitwise XOR (exclusive OR)
§ << left shift
§ >> right shift
§ ~ flip all bits (unary)

• Common usage: bit masks
§ a = a & 1; set all but lowest order bit to 0
§ a = a | 1; set lowest order bit to 1;
§ b = (a>>2) & 1; find value of bit b2 from b31 … b3 b2 b1 b0

7

7

4/14/25

4

File Descriptors

• The UNIX system interface represents files with a non-
negative integer identifier
– This integer is called a file descriptor
– The open() function returns a file descriptor

• Three file descriptors are open when a program starts
– 0: standard input (stdin)
– 1: standard output (stdout)
– 2: standard error (stderr)

10

10

Low Level File I/O

• Functions for low-level file I/O manipulate file descriptors

#include <fcntl.h>
#include <unistd.h>

char buffer[N]; data buffer
int fd1 = open(“file1.txt”, O_RDONLY); open fd1 for reading
int n_read = returns num. bytes read
 read(fd1, buffer, sizeof(buffer)); read up to N bytes into buffer

int fd2 = open(“file2.txt”, O_WRONLY); open fd2 for writing
int n_written = returns num. bytes written
 write(fd2, buffer, sizeof(buffer)); write up to N bytes from buffer

11

11

4/14/25

5

Some Functions for Low-Level I/O
int open(const char *pathname, int flags, mode_t mode);

• Opens a file and returns a file descriptor
• flags must include one of O_RDONLY, O_WRONLY, or O_RDWR
• flags may also be bitwise-or'd with O_APPEND (write after end of file),
O_TRUNC (if file exists, discard current data), O_CREAT (create the file if it
doesn’t exist), and a few others (full list in man page)

• mode must be provided with O_CREAT and specifies the file permissions (e.g.
0600 for giving RW permissions to the file owner)

int creat(const char *pathname, mode_t mode);
• Equivalent to open() with O_CREAT|O_WRONLY|O_TRUNC for flags

FILE *fdopen(int fd, const char *mode);
• Associates a FILE* stream to an existing file descriptor

int unlink(const char *pathname);
• Deletes a file from the filesystem

int close(int fd);
• Closes the file associated with fd

13

13

errno

• You can handle I/O errors programmatically
#include <errno.h>
… some I/O code that may encounter errors

if (errno == EACCES)
 … handle “Permission denied” error

• The value of the errno variable is the last error that occurred
– Only meaningful if checked after the function call that encountered the

error
– Manual pages for most functions specify possible values for errno

• Good programming practice: check the return values of all the
functions you invoke – an error may have occurred!

15

15

4/14/25

6

Unions

• Composite type that stores variables of different types in the
same memory location
union {
 int i;
 float f;
} u;
u.i = 1; assign value to int component of u
u.f = 2.0; overwrites u.i

• Avoid unions!

16

16

Review of Lecture

• What did we learn?

17

17

4/14/25

7

Next Steps

• Next lecture
– High-level file I/O

• Assignments for this week
– Read K&R Chapters 7.1, 7.5, 7.6, 7.7, B1 and review K&R Chapters 7.2, 7.4
– Weekly challenge: cat.c
– Quiz 7 due on Sunday
– Homework: lab10.pdf (on http://ter.ps/enee140), due on Friday at

11:59 pm
– Project 2: partial implementation due on Friday at 11:59 pm

19

http://ter.ps/enee140

