
3/31/25

1

8. Complex Programs
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Scalar data types (int, long, float, double, char)
– Basic control flow (while and if)
– Functions
– Random number generation
– Arrays and strings

• Where we’re going today
– Structuring complex programs
– Enumerations
– Composite data types: struct
– Command line arguments
– Truth values

• Where we’re going next
– Then: Control flow

2

2

http://ter.ps/enee140

3/31/25

2

Review of Arrays

• Arrays are vector data types
– They can hold multiple values of the same type

• The size of the array must be declared and not exceeded
int a[10];
a[0] = 0;
a[9] = 0;
a[10] = 0;

• Arrays can be initialized, but not assigned
int a[3] = {1, 2, 3}, b[3] = {0, 0, 0};
b = a;

3

syntax error: cannot assign arrays

logical error: index out of bounds

3

Command Line Arguments

• We’ve seen:
cp file1 file2 UNIX command-line utilities
cal 2014 3

• To retrieve the command line arguments in your program
int main(int argc, char *argv[])

argc Number of arguments provided, including the executable
argv[0] Name of the executable
argv[i] String containing the ith argument

– Example:
cal 2014 3 argc = 3 and argv = {“cal”, “2014”, “3”}

5

Command line arguments

5

3/31/25

3

Structures

• You can create composite types
struct point {
 int x;
 int y;
};
struct point a, b; variables of composite type
a.x = 0; accessing members
a.y = 0;
b = a; assignment

• Manipulating struct variables
– Can assign them
– Can access their members
– Can provide them as parameters to a function (they behave like scalar

variables)
– Can be the return type of a function
– Cannot compare them (e.g. b > a)

6

6

Using Structures in Your Programs

• Structures and functions
struct point addpoint (struct point p, int x, int y)
{ Can pass a structure as a parameter
 struct point temp;

 temp.x = p.x + x; No conflict between temp.x and x
 temp.y = p.y + y;
 return temp; Functions can return structures
}

• Arrays of structures
struct point point_cloud[1000];
point_cloud[0].x = 10;
point_cloud[0].y = 20;

• Good programming practice: when you need two parallel arrays,
consider using an array of structures instead

7

7

3/31/25

4

typedef

• Create a new type name, for convenient access

struct point {
 int x;
 int y;
};

typedef struct point Point; new composite type
typedef int Length; new scalar type
Point p = {0, 0}; variable of type Point
Length l = 1; variable of type Length

8

8

Truth Values

• The conditions in while (…) or if (…) can be assigned to variables
– The type of these variables is integer: 0 is false and 1 is true
– In a condition, any integer other than 0 will be accepted as true

int a = (1==0); a is 0
int b = (a>=0); b is 1
int c = 140;
if (c)
 printf(“c is true!”); the printf statement is executed

9

9

3/31/25

5

enum

• Enumeration constant: list of constant enumeration values
enum answer {NO, YES}; variables of type answer can take 2 values: NO or YES
enum months {JAN=1, FEB, MAR, APR,
 MAY, JUN, JUL, AUG,
 SEP, OCT, NOV, DEC}; FEB is 2, MAR is 3, etc.

int current_month = FEB;

10

10

Header Files

• We’ve seen
#include <stdio.h> Header files from the standard library
#include <math.h>

• A header file includes function declarations (prototypes) and constant
definitions that are shared among multiple C files
#include “myheader.h” Include your header file in the C source files

• Must prevent multiple inclusions
– Wrap everything inside the header in an include guard

#ifndef MYHEADER_H_
#define MYHEADER_H_
…

#endif /* MYHEADER_H_*/
11

11

3/31/25

6

Splitting a Program Into Multiple Files

• Another form of modularity
– Group related functions in one .c source file

• Create one .h header file and multiple .c source files
– Put all the shared declarations in the header file
– Put all the function implementations in the source files
– There must be only one main() function

• Compiling
– In CLion: add all the .c and .h files to the same project
– On the command line: gcc file1.c file2.c file3.c

• Provide all the source files, but not the header file

12

12

Variables With the Same Name

• We’ve seen
void fun()
{
 int a; variable a declared inside function fun()
 …
}
int main()
{
 int a; variable a declared inside function main()
 float a; error: cannot declare another variable named a in main()
 …
}

• a from fun() and a from main() are different variables
– The same is true for function parameters with the same name

13

13

3/31/25

7

Variable Scope

• Variable scope (where is the variable visible)
– Inside the block where it is declared

• A block is enclosed in { }

– Can also declare variables at the start of if, while, for, etc. blocks

while (condition) {
 int a = 1; variable a visible only inside while loop
 …
}

14

14

Global Variables

• Variables declared outside any function
int a; global variable
int main()
{
 …
}

• Global variable scope
– Globally accessible in all the files compiled and linked together

15

15

3/31/25

8

Static Variables Declared Outside Any Function

• Declared using keyword static
static int a; variable local to current .c file
int main()
{
 …
}

• Variable scope
– Visible only inside the .c file where they are declared
– Can be used to hold the internal state of a library

16

16

Static Variable Declared Inside A Function

• Initialized only the first time when the block is executed
void fun()
{
 static int count_invocations = 0; static variable
 count_invocations++;
 …
}

• Static variables preserve their value across function
invocations
– Same as global variables

• Variable scope
– Visible only inside the function where they are declared

17

17

3/31/25

9

Good Programming Practice

• Limit the scope of your variables
– Declare variables inside functions
– Use variables local to a .c file to store the internal state of a module

• Avoid global variables
– They break encapsulation

• Do not include variable declarations in .h files
– Include only function prototypes and constants defined with #define

• Avoid static variables inside a function
– They cause undefined behavior when the program execution is not

sequential

18

18

Review of Lecture

• What did we learn?

19

19

3/31/25

10

Next Steps

• Next week
– Control flow

• Assignments for this week
– Homework: lab08.pdf (on http://ter.ps/enee140), due on Friday at

11:59 pm
– Read K&R Chapters 2.11, 2.12, 3.4, 3.5, 3.6, 3.7, 3.8, 5.10, 6.2, 6.3, 6.7
– Weekly challenge: check_password_rules.c
– Quiz 6 (due on Sunday at 11:59 pm)

20

20

http://ter.ps/enee140

