
2/24/25

1

5. Integer and Floating Point Arithmetic
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Using variables and constants
– Variable assignment and operators
– Iterating (while, for) and branching (if)
– printf() and scanf()
– Functions
– Basics of data types

• Where we’re going today
– Unsigned data type
– The % operator
– Prefix and postfix increment operators
– Assignment operators (+=)
– Integer & floating point arithmetic
– Overflow and underflow

• Where we’re going next
– Data types and type conversion

2

2

http://ter.ps/enee140

2/24/25

2

Review: Integer vs. Floating-Point Arithmetic

• What is the value of c?
float a = 1;
float b = 2;

int c=(a+b)/2+0.5;

3

3

Review: Integer vs. Floating-Point Arithmetic – cont’d

• What is the value of g?
int a = 1;
int b = 2;
float c = 1;
float d = 2;
float e = c/d;
int f = a/d;
int g;

if (e > (float)f) {
 g = 1;
} else {
 g = 0;
}

4

4

2/24/25

3

Prefix and Postfix Increment Operators

• We’ve seen: increment and decrement operators in C
 a++; same as a = a + 1;
 ++a; same as a = a + 1;
 a--; same as a = a - 1;
 --a; same as a = a - 1;

• We’ve also seen: value of assignment expressions
 c = b = a = 0;

• Both a++ and ++a increment a, but they return different values
 b = a++; postfix increment: a becomes 1, b becomes 0
 b = ++a; prefix increment: a becomes 1, b becomes 1
– Same for a-- and --a

5

a, b and c become 0

5

Assignment Operators

• We’ve seen
a++; increment a by 1
a = a + 10; increment a by 10

• Prefix and postfix operators
a = 1;
b = a++;
b = ++a;

• Other assignment operators
a += 10; increment a by 10
Same for -=, *=, /=, %=

6

a becomes 2, b becomes 1
a becomes 3, b becomes 3

6

2/24/25

4

Integer (Euclidean) Division – In Math

• Dividing two integers produces a quotient (q) and a remainder (r)
– The quotient and the remainder always exist and are unique
– Example: dividing a pie with 9 slices among 4 people

(source: Wikipedia)

– 9 / 4 => q = 2 and r = 1

• Mathematical definition:
– Given integers A and B, with B ≠ 0: there exist unique integers r,q such that:

• A = B*q + r and
• 0 ≤ r< B

7

7

Integer (Euclidean) Division - Examples

• What are the remainders and quotients when dividing:
§ 8 by 4

§ 4 by 8

§ 10 by 10

• What is the remainder when dividing:
§ (2n – 1) by 2

§ 2*n by n

§ (2n – 1) by 2n
(assume that n is a positive integer)

8

8

2/24/25

5

Computer Arithmetic – Operations

• We’ve seen
 + - / * arithmetic operators

– Work for both integer and floating-point variables
– Integer division truncates toward 0 (i.e. the fractional part is discarded)

• The modulus operator %
– Works only for integers
– Produces the remainder from integer division

 int a = 5 / 3; value of a is
 int b = 5 % 3; value of b is

• The values of a % n range between

9

9

Order of Evaluation

• Operator precedence (complete rules in K&R Table 2.1)
1. ! ++ -- (unary operators)
2. * / %
3. + -
4. < <= > >=
5. == !=
6. &&
7. ||
8. =

• Rule of thumb:
– Division and multiplication come before addition and subtraction
– Put parentheses around everything else

10

10

2/24/25

6

Unsigned Data Types

• We’ve seen
int a = -1;
long b = -1;

• Unsigned data types are always positive
unsigned a = 1;
unsigned long b = 1;

• Unsigned literals
1U 1 as unsigned constant
1LU 1 as unsigned long constant

11

11

Limits for Computer Integers

• Limits for unsigned integers (unsigned, not unsigned long)
– UINT_MIN = 0
– UINT_MAX = 2w – 1

• Limits for signed integers (int, not long int)
– INT_MIN = –2w–1

– INT_MAX = 2w–1 – 1
– Note: the textbook incorrectly implies that INT_MIN == -INT_MAX

(section B11)

• w is machine dependent
– w = 32 on the GRACE machines
– UINT_MAX, INT_MIN and INT_MAX are defined as constants in

limits.h

12

12

2/24/25

7

Integer Overflow

• What happens when you add 1 to UINT_MAX?
– The mathematical value (2w – 1) + 1 = 2w cannot be stored in an

unsigned variable
– The result of the operation is 0

• Intuition: unsigned numbers wrap around
– Think of a 12h clock
– 11 o’clock + 1h = 0
– We count time modulo 12h
– This means that the time displayed

is the remainder from a division by 12

• Unsigned operations are done modulo 2w

13

Source: Wikipedia

13

Unsigned Integer Addition

• Mathematical addition: infinite precision
– s = u + v

• unsigned addition: operations done modulo 2w

– s = (u + v) mod 2w

– Example: UINT_MAX + 1 = 2w mod 2w = 0 (overflow)

• Multiplication can overflow in similar manner
– Same for addition and multiplication of signed integers

14

14

2/24/25

8

Properties of Signed Integers – Examples

• You can represent more negative than positive numbers
– Positive range: 1 .. (2w–1 – 1)
– Negative range: -1 .. –2w–1

• Signed integers can overflow as well
§ INT_MAX + 1 = INT_MIN

§ Adding 2 positive numbers may produce a negative number!

§ INT_MIN – 1 = INT_MAX
§ Adding 2 negative numbers may produce a positive number!

§ INT_MIN = -INT_MIN
§ INT_MIN is its own inverse

15

15

Conversion Between Signed and Unsigned

• Type conversion int ® unsigned visualized
– Signed int constant: 0
– Unsigned constant: 0U

16

0

INT_MAX

INT_MIN

–1
–2

0

UINT_MAX
UINT_MAX – 1

INT_MAX
INT_MAX + 1

int Range

unsigned
Range

Source: R. Bryant & D. O’Hallaron

16

2/24/25

9

Mathematical Properties of Integer Arithmetic

• Closed under addition and multiplication
– Result of signed/unsigned operation is also a signed/unsigned integer

• Commutative
• Associative
• 0 is additive identity; 1 is multiplicative identity
• Multiplication distributes over addition

– a * (b + c) = a*b + a*c

• Does not obey the ordering properties of math integers
u > 0 ≠> u + v > v
u > 0, v > 0 ≠> u · v > 0

17

17

Properties of Floating Point Numbers

• As many negative as positive numbers

• Special values (constants for some of these defined in float.h)
– Max floating point number ⇒ operations may overflow
– Min floating point > 0 ⇒ operations may underflow
– Smallest ε such that 1.0 + ε ≠ 1.0 ⇒ operation results may be rounded
– +Inf, -Inf, NaN (not a number)

• Avoid testing the equality of values resulting from floating point
operations
if (FLT_MAX == (FLT_MAX+1)) {…} condition is true
if (cos(M_PI / 2) != 0.0) {…} condition is true

18

18

2/24/25

10

Mathematical Properties of Floating Point Arithmetic

• Closed under addition and multiplication
– But may generate infinity or NaN

• Commutative
• Not associative

– (a + b) + c ≠ a + (b + c)
– (a * b) * c ≠ a * (b * c)
– Possibility of overflow, inexactness of rounding

• Multiplication does not distribute over addition
– a * (b + c) ≠ a * b + a * c
– Possibility of overflow, inexactness of rounding

• Monotonicity
– a ≥ b ⇒ a+c ≥ b+c
– a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c
– Exceptions: ±Inf and NaN

19

19

Review of Lecture

• What did we learn?

20

2/24/25

11

Next Steps

• Next lecture
– Data types and type conversion

• Assignments for this week
– Read K&R Chapters 2.2, 2.9, 3.3, 6.1, B5, B6

• Note: some of these chapters refer to strings (e.g. char s[]), which we’ll
cover later

• For now, think of s[i] as a character variable
– Weekly challenge: dec2bin.c
– Homework: lab05.pdf (on http://ter.ps/enee140), due on Friday at

11:59 pm
– No quiz next week

21

21

http://ter.ps/enee140

