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Today’s Lecture

• Where we’ve been
– Using variables and constants
– Variable assignment and operators
– Iterating (while, for) and branching (if)
– printf() and scanf()
– Functions
– Basics of data types

• Where we’re going today
– Unsigned data type
– The % operator 
– Prefix and postfix increment operators
– Assignment operators (+=)
– Integer & floating point arithmetic 
– Overflow and underflow

• Where we’re going next
– Data types and type conversion
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Review: Integer vs. Floating-Point Arithmetic

• What is the value of c?
float a = 1;
float b = 2;

int c=(a+b)/2+0.5;

3

3

Review: Integer vs. Floating-Point Arithmetic – cont’d

• What is the value of g?
int a = 1; 
int b = 2; 
float c = 1; 
float d = 2;
float e = c/d;
int f = a/d; 
int g;

if (e > (float)f) {
  g = 1;
} else {
  g = 0;
}
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Prefix and Postfix Increment Operators

• We’ve seen: increment and decrement operators in C
 a++;   same as a = a + 1;
 ++a;   same as a = a + 1;
 a--;   same as a = a - 1;
 --a;   same as a = a - 1;

• We’ve also seen: value of assignment expressions
 c = b = a = 0; 

• Both a++ and ++a increment a, but they return different values
 b = a++;  postfix increment: a becomes 1, b becomes 0
 b = ++a;  prefix increment: a becomes 1, b becomes 1
– Same for a-- and --a
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a, b and c become 0
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Assignment Operators

• We’ve seen
a++;       increment a by 1
a = a + 10;     increment a by 10

• Prefix and postfix operators
a = 1;   
b = a++;   
b = ++a;   

• Other assignment operators
a += 10;     increment a by 10
Same for -=, *=, /=, %=
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a becomes 2, b becomes 1
a becomes 3, b becomes 3 
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Integer (Euclidean) Division – In Math

• Dividing two integers produces a quotient (q) and a remainder (r)
– The quotient and the remainder always exist and are unique
– Example: dividing a pie with 9 slices among 4 people 

(source: Wikipedia)

– 9 / 4 => q = 2 and r = 1

• Mathematical definition: 
– Given integers A and B, with B ≠ 0: there exist unique integers r,q such that:

• A = B*q + r  and
• 0 ≤ r< B
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Integer (Euclidean) Division - Examples

• What are the remainders and quotients when dividing:
§ 8  by  4

§ 4  by  8

§ 10  by 10

• What is the remainder when dividing:
§ (2n – 1) by   2 

§ 2*n   by   n

§ (2n – 1) by  2n 
(assume that n is a positive integer)
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Computer Arithmetic – Operations

• We’ve seen
 + - / *   arithmetic operators

– Work for both integer and floating-point variables
– Integer division truncates toward 0 (i.e. the fractional part is discarded)

• The modulus operator %
– Works only for integers
– Produces the remainder from integer division

 int a = 5 / 3;  value of a is 
 int b = 5 % 3;  value of b is 

• The values of a % n range between 
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Order of Evaluation

• Operator precedence (complete rules in K&R Table 2.1)
1. ! ++ -- (unary operators)
2. * / %
3. + -
4. < <= > >=
5. == !=
6. &&
7. ||
8. = 

• Rule of thumb: 
– Division and multiplication come before addition and subtraction
– Put parentheses around everything else
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Unsigned Data Types

• We’ve seen
int a = -1;    
long b = -1;   

• Unsigned data types are always positive
unsigned a = 1;   
unsigned long b = 1;  

• Unsigned literals
1U    1 as unsigned constant
1LU    1 as unsigned long constant
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Limits for Computer Integers

• Limits for unsigned integers (unsigned, not unsigned long)
– UINT_MIN = 0    
– UINT_MAX =  2w – 1  

• Limits for signed integers (int, not long int)
– INT_MIN  =  –2w–1 

– INT_MAX =  2w–1 – 1 
– Note: the textbook incorrectly implies that INT_MIN == -INT_MAX 

(section B11)

• w is machine dependent
– w = 32 on the GRACE machines
– UINT_MAX, INT_MIN and INT_MAX are defined as constants in 

limits.h
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Integer Overflow

• What happens when you add 1 to UINT_MAX?
– The mathematical value (2w – 1) + 1 = 2w cannot be stored in an 

unsigned variable
– The result of the operation is 0

• Intuition: unsigned numbers wrap around
– Think of a 12h clock
– 11 o’clock + 1h = 0
– We count time modulo 12h
– This means that the time displayed 

is the remainder from a division by 12

• Unsigned operations are done modulo 2w 
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Source: Wikipedia
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Unsigned Integer Addition

• Mathematical addition:  infinite precision
– s        = u + v

• unsigned addition:   operations done modulo 2w

– s        = (u + v)  mod 2w

– Example: UINT_MAX + 1  = 2w mod 2w = 0 (overflow)

• Multiplication can overflow in similar manner
– Same for addition and multiplication of signed integers
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Properties of Signed Integers – Examples 

• You can represent more negative than positive numbers
– Positive range: 1  .. (2w–1 – 1)
– Negative range: -1 .. –2w–1

• Signed integers can overflow as well
§ INT_MAX + 1 = INT_MIN

§ Adding 2 positive numbers may produce a negative number!

§ INT_MIN – 1 = INT_MAX
§ Adding 2 negative numbers may produce a positive number!

§ INT_MIN = -INT_MIN
§ INT_MIN is its own inverse
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Conversion Between Signed and Unsigned

• Type conversion int ® unsigned visualized
– Signed int constant: 0
– Unsigned constant: 0U
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Source: R. Bryant & D. O’Hallaron
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Mathematical Properties of Integer Arithmetic

• Closed under addition and multiplication
– Result of signed/unsigned operation is also a signed/unsigned integer

• Commutative
• Associative
• 0  is additive identity; 1 is multiplicative identity
• Multiplication distributes over addition

– a * (b + c) = a*b + a*c

• Does not obey the ordering properties of math integers
u > 0 ≠> u + v > v
u > 0, v > 0 ≠> u · v > 0
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Properties of Floating Point Numbers

• As many negative as positive numbers

• Special values (constants for some of these defined in float.h)
– Max floating point number  ⇒ operations may overflow
– Min floating point > 0   ⇒ operations may underflow
– Smallest ε such that 1.0 + ε ≠ 1.0 ⇒ operation results may be rounded
– +Inf, -Inf, NaN (not a number)

• Avoid testing the equality of values resulting from floating point 
operations
if (FLT_MAX == (FLT_MAX+1)) {…} condition is true
if (cos(M_PI / 2) != 0.0) {…}  condition is true
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Mathematical Properties of Floating Point Arithmetic

• Closed under addition and multiplication
– But may generate infinity or NaN

• Commutative
• Not associative

– (a + b) + c ≠ a + (b + c)
– (a * b) * c ≠ a * (b * c)
– Possibility of overflow, inexactness of rounding

• Multiplication does not distribute over addition
– a * (b + c) ≠ a * b + a * c
– Possibility of overflow, inexactness of rounding

• Monotonicity
– a ≥ b    ⇒ a+c ≥ b+c
– a ≥ b  & c ≥ 0  ⇒ a * c ≥ b *c
– Exceptions: ±Inf and NaN
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Review of Lecture

• What did we learn?
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Next Steps

• Next lecture
– Data types and type conversion

• Assignments for this week
– Read K&R Chapters 2.2, 2.9, 3.3, 6.1, B5, B6

• Note: some of these chapters refer to strings (e.g. char s[]), which we’ll 
cover later

• For now, think of s[i] as a character variable
– Weekly challenge: dec2bin.c 
– Homework: lab05.pdf (on http://ter.ps/enee140), due on Friday at 

11:59 pm
– No quiz next week
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