5. Integer and Floating Point Arithmetic
ENEE 140

\\.gRSIT},
. N 0
Prof. Tudor Dumitras E
Associate Professor, ECE l: :6
University of Maryland, College Park ’4,‘&1 P’;é\'

http://ter.ps/eneeldo

Today’s Lecture

Where we’ve been

Using variables and constants

Variable assignment and operators
Iterating (while, for)and branching (if)
printf() and scanf()

Functions

Basics of data types

Where we're going today

Unsigned data type

The % operator

Prefix and postfix increment operators
Assignment operators (+=)

Integer & floating point arithmetic
Overflow and underflow

Where we're going next
— Data types and type conversion

2/24/25

http://ter.ps/enee140

Review: Integer vs. Floating-Point Arithmetic

* What is the value of c?
float a = 1;
float b = 2;
(P,
int c=(a+b)/2+0.5;
H_I

[]

%_J

[]

Review: Integer vs. Floating-Point Arithmetic — cont’d

* What is the value of g?

int a = 1;

int b = 2;

float c = 1;

float d = 2;

float e = c/d; | |
int £ = a/d; | |
int g;

if (e > (float)f) { | |

g =1;
} else {
g =0;

}

2/24/25

Prefix and Postfix Increment Operators

* We've seen: increment and decrement operators in C

a++; sameasa=a+1;
++a; sameasa=a+1;
a--; sameasa=a-1;
--a; sameasa=a-1;

* We've also seen: value of assignment expressions
c=b=a-=0; a, band c become 0

* Both a++ and ++a increment a, but they return different values

b = a++; postfix increment: a becomes 1, b becomes 0
b = ++a; prefix increment: a becomes 1, b becomes 1
— Same for a--and --a

Assignment Operators

* We've seen
a++; increment a by 1

a =a + 10; increment a by 10

* Prefix and postfix operators

a = 1;
b = a++; a becomes 2, b becomes 1
b = ++a; a becomes 3, b becomes 3

* Other assighment operators
a += 10; increment a by 10
Same for -=, *=, /=, %=

2/24/25

Integer (Euclidean) Division — In Math

* Dividing two integers produces a quotient (q) and a remainder (r)
— The quotient and the remainder always exist and are unique

— Example: dividing a pie with 9 slices among 4 people
(source: Wikipedia)

)
—9/4=>q=2andr=1

¢ Mathematical definition:

— Given integers A and B, with B # 0: there exist unique integers r,q such that:

e A=B*q+r and
* 0<r<B

Integer (Euclidean) Division - Examples

* What are the remainders and quotients when dividing:

=8 by 4 | l
=4 by 8 | l
= 10 by 10 | |

* What is the remainder when dividing:
- (@2-1) by 2 | |

= 2*¥n by n | l
= (2"-1) by 2" | |

(assume that n is a positive integer)

2/24/25

Computer Arithmetic — Operations

* We've seen
+ -/ * arithmetic operators
— Work for both integer and floating-point variables
— Integer division truncates toward O (i.e. the fractional part is discarded)

* The modulus operator %
— Works only for integers
— Produces the remainder from integer division

int a 5/ 3; value of a is | |
int b =5 % 3; value of b is | |

* Thevaluesof a % n range between | |

9
Order of Evaluation
* Operator precedence (complete rules in K&R Table 2.1)
1. ! ++ -- (unaryoperators)
2. * / %
3. + -
4, < <= > >=
5 —— !:
6. &&
7. |1
8 -
* Rule of thumb:
— Division and multiplication come before addition and subtraction
— Put parentheses around everything else
10
10

2/24/25

Unsigned Data Types

* We've seen
int a = -1;
long b = -1;

* Unsigned data types are always positive
unsigned a = 1;
unsigned long b = 1;

* Unsigned literals

1U 1 as unsigned constant
1LU 1 as unsigned long constant

11

Limits for Computer Integers

* Limits for unsigned integers (unsigned, not unsigned long)
— UINT_MIN = 0
— UINT_MAX = 2¥ -1

* Limits for signed integers (int, not long int)

— INT_MIN = w1
— INT_MAX = 2wl-1
— Note: the textbook implies that INT_MIN == -INT_MAX

(section B11)

* wis machine dependent

— w =32 on the GRACE machines

— UINT_MAX, INT_MIN and INT_MAX are defined as constants in
limits.h

12

2/24/25

Integer Overflow

* What happens when you add 1 to UINT_MAX?

— The mathematical value (2% —1) + 1 = 2% cannot be stored in an
unsigned variable

— The result of the operationis 0

* Intuition: unsigned numbers
Think of a 12h clock
11 o’clock + 1h =0
+4h
We count time modulo 12h ’

This means that the time displayed
is the remainder from a division by 12

* Unsigned operations are done modulo 2%

Source: Wikipedia

13
Unsigned Integer Addition
* Mathematical addition: precision
— s =u+tv
* unsigned addition: operations done
- s =(u+v) mod 2%
— Example: UINT_MAX + 1 =2%mod2¥=0 ()

* Multiplication can overflow in similar manner

— Same for addition and multiplication of signed integers

14

2/24/25

Properties of Signed Integers — Examples

* You can represent more negative than positive numbers
— Positive range: 1..(2wt-1)
— Negative range: -1..-2w1

* Signed integers can overflow as well

= INT_MAX+1=INT_MIN
= Adding 2 positive numbers may produce a negative number!

= INT_MIN -1 =INT_MAX
= Adding 2 negative numbers may produce a positive number!

* INT_MIN =-INT_MIN

= INT_MIN is its own inverse

15

Conversion Between Signed and Unsigned

* Type conversion int — unsigned visualized
— Signed int constant: @

@ UINT_MAX

— Unsigned constant: U
@ UINT_MAX - 1

® INTMAX + 1 |, ncigned

B INT_MAX ® INT_MAX Range
int Range) ® o
-1 e)
-2 @
INT_MIN ® Source: R. Bryant & D. O’Hallaron 16

16

2/24/25

Mathematical Properties of Integer Arithmetic

* Closed under addition and multiplication

— Result of sighed/unsigned operation is also a signed/unsigned integer
* Commutative
* Associative
* 0 is additive identity; 1 is multiplicative identity

* Multiplication distributes over addition
— a*(b+c)=a*b+a*c

* Does not obey the ordering properties of math integers
u>0 > u+v>v
u>0,v>0 #> u-v>0

17

Properties of Floating Point Numbers

* As many negative as positive numbers

* Special values (constants for some of these defined in float.h)
Max floating point number = operations may overflow

Min floating point > 0 = operations may underflow

Smallest € such that 1.0 + € # 1.0= operation results may be rounded

+Inf, -Inf, NaN (not a number)

of values resulting from floating point

operations
if (FLT_MAX == (FLT_MAX+1)) {..} conditionistrue
if (cos(M_PI / 2) !=190.0) {.} condition is true

18

2/24/25

Mathematical Properties of Floating Point Arithmetic

* Closed under addition and multiplication

— But may generate infinity or NaN
* Commutative

associative

— (@a+b)+cza+(b+c)

— (@a*b)*cza*(b*c)

— Possibility of overflow, inexactness of rounding
* Multiplication does not distribute over addition

—a*(b+c)za*b+a*c

— Possibility of overflow, inexactness of rounding
* Monotonicity

—azxb = a+c 2 b+c

—a2b &c20 =a*c2b*c

— Exceptions: zInf and NaN

19

Review of Lecture

¢ What did we learn?

20

2/24/25

10

Next Steps

¢ Next lecture

— Data types and type conversion

* Assignments for this week
— Read

* Note: some of these chapters refer to strings (e.g. char s[]), which we’ll
cover later

* For now, think of s[i] as a character variable
— Weekly challenge:
— Homework: (on http://ter.ps/enee140), due on Friday at
11:59 pm
— No quiz next week

21

21

2/24/25

11

http://ter.ps/enee140

