
2/11/25

1

3. Character Input/Output
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Variables and Constants
– Arithmetic operations
– while loops

• Where we’re going today
– Increment, relational and logical operators
– Branching: if statement
– Loops: for
– Data types: chars
– Input and output

• Where we’re going next
– Functions

2

2

http://ter.ps/enee140

2/11/25

2

We’ve Seen: Programming Concepts

• Write programs to compute quantities difficult to work out in
your head
– Programming languages provide variables and arithmetic operations

• Come up with step-by-step procedure for arriving at the result
– Programming languages provide loops and branching statements

• Break down a problem into simpler steps
– Programming languages provide functions
– Helpful for solving problems from the top down to the small details

• Communicate with the user
– Programming languages provide input/output mechanisms

3

3

Reminder: Textbook Clarifications

• If you find the K&R textbook confusing …

… Consult Steve Summit’s excellent notes on the textbook:
http://www.eskimo.com/~scs/cclass/krnotes/top.html

• Linked from the class web page

… Attend the ENEE 140 lectures

… Ask questions on Piazza

4

4

http://www.eskimo.com/~scs/cclass/krnotes/top.html

2/11/25

3

Increment Operators

• We’ve seen
 a = a + 1; increment by assigning old value + 1

• Increment and decrement operators in C
 a++; same as a = a + 1;
 ++a; same as a = a + 1;
 a--; same as a = a - 1;
 --a; same as a = a - 1;

– There is a subtle difference between a++ and ++a (more on this later)

• Assignment operations also return the value assigned
 a = 0;
 b = ++a; both a and b become 1
 a = b = 0; both a and b become 0

5

5

Value of Assignment Expression

• In C, an assignment expression returns the value that is assigned
 b = (a = 0); a becomes 0, and b also becomes 0

• This means that you can write things like this:
 c = b = a = 0; a, b and c become 0

6

6

2/11/25

4

Specifying Conditions

• We’ve seen
while (condition) { statements executed repeatedly while condition is true
 statements
}

How can we specify the condition?

7

7

Relational and Logical Operators

• We’ve seen: relational operators, used for specifying conditions
if (a < b) {…} condition: if a less than b
if (a > b) {…} condition: if a greater than b
if (a <= b) {…} condition: if a less than or equal to b
if (a >= b) {…} condition: if a greater than or equal b
if (a == b) {…} condition: if a equal to b
if (a != b) {…} condition: if a not equal to b

• Logical operators are used for combining conditions
if (cond1 && cond2) {…} condition: both cond1 and cond2
if (cond1 || cond2) {…} condition: either cond1 or cond2
if (!cond1) {…} condition: not cond1

8

8

2/11/25

5

Branching

• Execute statements conditionally
if (condition) { statements are executed if condition is true

 statements
 }

• Provide alternative to the condition
if (condition) { statements are executed if condition is true

 statements
 } else {
 statements_2 statements_2 are executed if condition is false
 }

9

9

Loops

• We’ve seen
int i = 0; initialize i
while (i < 10) { test !(exit condition)

 …
 i++; increment i
 }

• Iterate over a set of values
int i;
for (i = 0; i < 10; i++) { iterate over i in [0, 10)

 …
 }

• Important: every loop must have an exit condition that
eventually becomes true

10

10

2/11/25

6

Common Mistake: Infinite Loops

• While loop example:
int i = 0;
while (i < 10) {

 printf(“%d\n”, i);
 if (i >0) {
 i++;
 }
 }

• For loop example:
int i = 0; you may omit any of the
for (; i < 10 ;) { 3 components of a for statement …

 printf(“%d\n”, i); … but you must still ensure the loop exit
 }

11

When is i incremented?

How many iterations does this loop execute?

11

Typical Exam Question

• Consider the following while loop:
int a = 0, b = 5;
while (a < b) {

 printf(“%d %d\n”, a, b);
 a = a + 2;
 b = b + 1;
 }

• Write a for loop that does the same thing

for (b = 5; a < b;) {

 printf(“%d %d\n”, a, b);
 }

12

12

2/11/25

7

Implementation Options for Conditional Execution

• How many times is the block executed?
if (i < 10) {

 block of statements
 }

• How many times is the block executed?
while (i < 10) {

 block of statements
 }

• How many times is the block executed?
for (i = 0; i <= 10; i++) {

 block of statements
 }

13

(assuming that i is not
modified inside the block)

13

Question from Quiz 2

• How many times is the printf statement in the for loop below
executed:

for (fahr = 0; fahr <= 100; fahr = fahr + 20) {
printf("%.2f\n", fahr);

}

14

14

2/11/25

8

Data Types

• We’ve seen
 int a = 1; integer variable
 float b = 1.1; floating-point variable

• Larger data types (can hold larger values)
 long a = 1; integer variable
 double b = 1.1; floating-point variable

• Characters
 char c = 'A'; holds one character
 char c = '\n';

• A data type is a set of rules for handling a certain kind of variables
– Rules govern the interpretation of internal representations and the

operations allowed
• We will discuss the implications of int and float representations in future

lectures
– In C, you must specify the type when declaring each variable

15

15

The char Data Type

• Internally, characters are represented as integers

• Rules for interpreting the value of the stored data
 char c = 'D' + 1; value of c is ‘E’
 int diff = 'c' – 'a'; value of diff is 2
 if (c >= 'A' && c <= 'Z') { … } check if c is uppercase

• A–Z have consecutive codes (numerical values). So do a–z and 0–9
– The offset between the lowercase and uppercase versions of a character is

always the same
 'A' – 'a' == 'B' – 'b'

– Converting a lowercase character to uppercase
 c = c +

16

add the offset of the
uppercase range

16

2/11/25

9

Reading and Writing Characters

• Read one character from the input
 int c = getchar();

• Write one character to the output
 putchar(c);
 printf("%c", c);

• Important: getchar() returns an int rather than a char
– This allows the function to return the special value EOF when no more

input is available
 while (getchar() != EOF) {
 …
 }

• Good programming practice: Have a mechanism to indicate
errors and exceptional conditions (e.g. no more input)

17

17

More on the char Data Type

• Internally, characters are represented as integers

• The corresponding value of the character is determined by an
encoding scheme
– For char: American Standard Code for Information Interchange (ASCII)
– Other encoding schemes: Unicode

• You can examine the internal encoding of characters
 printf("%d", c);

• Good programming practice: Do not rely on the internal
values of the encoding
 c = c + 'A' – 'a'; instead of c = c - 35;

18

18

2/11/25

10

Compiling from the Command Line

• We’ve seen: the programming toolchain

19

Edit code Compile Execute

0100111…

Source code

#include <stdio.h>

int
main()
{
 …

Executable program

CLion:

gcc -o hello_world hello_world.c ./hello_worldCommand line:

Invoke these commands in the directory where your source file is located
– Good practice: compile and run your programs on GRACE (using Putty or the

MacOS Terminal) before submitting

19

Review of Lecture

• What did we learn?

20

20

2/11/25

11

Next Steps

• Next lecture
– Functions (lecture on Zoom)

• Assignments for this week
– Read K&R Chapters 1.7, 1.8, 7.2, 7.4, B4
– Weekly challenge: temperature_conversion_function.c
– Homework: enee140_lab03.pdf, due on Friday at 11:59 pm
– Quiz 3, due on Sunday at 11:59 am

21

