
2/3/25

1

2. Basic Program Structure
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

What is Programming (Review)

• Becoming fluent in the language that computers understand
– Humans are better than computers at doing certain things
– Computers are better than humans at other things
– If you can program, you can do both!

• Programming stimulates a way of thinking
– Helps you acquire aptitudes and skills applicable in many situations
– Examples: top-down problem solving, thinking at multiple levels of

abstraction, thinking of worst-case scenarios to avoid failures

• Programming is a creative process
– Within the bounds of what computers and programming languages can

do

2

2

http://ter.ps/enee140

2/3/25

2

ENEE 140 Focuses on Programming Principles

• The lectures will discuss important programming principles
– Most of these are applicable to any programming language
– C examples will be provided for illustration

• To learn all the details about the C concepts discussed, you
must read additional materials
– The relevant chapters in the textbook
– Many Internet resources on C programming (Google is your friend)
– Quick documentation: press F1 in CLion

3

3

First Principles: Code Quality

• Learning objective: write high-quality code
– Correctness: the code should do what it’s supposed to do (and

nothing else!)
– Maintainability: other programmers should find the code easy to read

and to modify

• Other code-quality attributes that we will not emphasize in
ENEE 140
– Efficiency
– Robustness
– Security

4

4

2/3/25

3

The C Language

• A low-level language
– No operations for manipulating composite types (e.g. strings, lists, arrays),

no memory management, no input/output facilities
• The standard library provides some of these facilities

– A small language
• Can be learned quickly

• Topics covered in ENEE 140:
– Data types, type conversions
– Operators (arithmetic, relational, logic, bitwise, etc.)
– Flow control (loops, branches)
– Functions
– Multi-dimensional arrays

• Topics not covered in 140:
– Recursion
– Pointers

5

5

The Programming Toolchain

6

Code Editor Compiler Execution
Environment

0100111…

Source code

#include <stdio.h>

int
main()
{
 …

Executable program

Debugger

Run program
step-by-step

6

2/3/25

4

Getting Started in C

int main() { … } each program must have one main() function
return … exit the function
; end each statement with a semicolon

#include <stdio.h> use functions from the standard library
printf(…) print something

// … or /* … */ comments (ignored by the compiler)

7

Use comments to explain what your
program is trying to do

7

We’ve Seen: Programming Concepts

• Write programs to compute quantities difficult to work out in
your head
– Programming languages provide variables and arithmetic operations

• Come up with step-by-step procedure for arriving at the result
– Programming languages provide loops and branching statements

• Break down a problem into simpler steps
– Programming languages provide functions
– Helpful for solving problems from the top down to the small details

• Communicate with the user
– Programming languages provide input/output mechanisms

8

8

2/3/25

5

Variables

• Correspond to memory locations that hold data and that may
be manipulated in your program

• Must be declared:
 int a; integer variable
 float b; floating-point variable (has fractional part)

• Must be assigned a value
 a = 1; assignments change the value
 b = 1.5; stored in the variable

• May be used in expressions
 a < 10 comparison test
 b = a + 1; value of arithmetic operation used in
 assignment

9

9

Assignment vs. Equality Testing

a = a + 1; assignment (increment a by 1)

a == a + 1 equality testing (result is false)

10

10

2/3/25

6

Arithmetic Operations

+ - * /

• Integer arithmetic
– Division truncates: the fractional part is discarded

 int a = 1 / 2; value of a is 0

• Floating-point arithmetic
– Division does not truncate

 float b = 1.0 / 2.0; value of b is 0.5

11

11

Relational Operators

• Used for making comparisons

• Work on both integers and floats

• Good programming practice: avoid (in)equality tests with
floats!
– Example:

 b != 0 if b is a float, try to use <= or >= instead
– Results of floating-point operations are imprecise (more on this later)

12

== Equal > Greater Than
!= Not Equal <= Less Than or Equal
< Less Than >= Greater Than or Equal

12

2/3/25

7

Combining ints and floats in Expressions

• If an arithmetic operator has integer operands
– Integer arithmetic is used

 int a = 1;
 int b = a / 2; value of b is 0

• If an arithmetic operator has at least one floating-point
operand
– Floating-point arithmetic is used

 float a = 1;
 float b = a / 2; value of b is 0.5

• Expression type is evaluated before assignment
 float b = 1 / 2; value of b is 0
 float b = 1.0 / 2.0; value of b is 0.5

13

13

Symbolic Constants

• Good programming practice: if you have constants in your
program, give them a symbolic name

• Declaring constants
– Modern constant declarations

 const float pi = 3.14;

– Old-school constant declarations (traditionally uppercase)
 #define PI 3.14 no type, no semicolon

• Using constants
 float radius = 1;
float circumference = 2 * PI * radius;

14

14

2/3/25

8

while loops

• Repeating program statements while a condition holds
while (condition) { condition is tested first

 …
 }

• Example: print “Hello world” 10 times
– You need a variable to count the number of iterations. Let’s call it i
int i = 0; initialize i
while (i < 10) { iterate while i is less than 10

 printf (“Hello World\n”);
 i = i + 1; increment i
 }

If you find yourself copy-pasting code several times, think
about rewriting your program to use a loop!

15

15

Review of Lecture

• What did we learn?

16

16

2/3/25

9

Next Steps

• Next lecture
– Character Input/Output

• Assignments for this week
– Review K&R 1.2 and make sure you understand how while loops and

arithmetic operations work
– Read K&R Chapters 1.3, 1.5, 2.1, 2.6, 3.1, 3.2
– Syllabus Quiz, due on Friday at 11:59 pm

• Tests your understanding of the ENEE 140 syllabus
– Quiz 2, due on Sunday at 11:59 pm

• Tests reading assignment
– Weekly challenge: word_per_line.c
– Homework: lab02.pdf, due on Friday at 11:59 pm

17

17

